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“�I often tell my students not to be 
misled by the name ‘artificial 
intelligence’—there is nothing 
artificial about it. AI is made by 
humans, intended to behave by 
humans, and ultimately, to impact 
humans’ lives and human society.”1

Fei-Fei Li
Co-Director of the Stanford Institute for Human-
Centered Artificial Intelligence 

Foreword
In 2017, we published our first Artificial Intelligence 
Primer. It focused on recent advances in supervised and 
unsupervised machine learning (ML), with a heavy 
emphasis on big data. At the time, many of these 
techniques were still being honed inside the laboratory, 
with academic and other research institutions leading 
development. Fast-forward 7 years, and we now live in a 
world where artificial intelligence (AI) has firmly entered 
the mainstream, with generative AI (GenAI), multimodal 
AI (MMAI), and autonomous systems poised to further 
disrupt government, industry, and society. 

Today, the challenge for all of us is to look beyond the 
hype to discern the real value and science of AI systems. 
To aid in these assessments, we have updated our 
previous report to produce this Modern Artificial 
Intelligence Primer. Our goal is to demystify this 
technology and empower leaders to make smart, 
thoughtful decisions about AI’s development and 
applications. A key focus is ensuring its responsible use. 

Throughout this primer, we strive to address today’s 
most important questions about AI, including:

•	 What should enterprises consider when  
evaluating AI?

•	 What technical advances finally led to the  
GenAI breakthrough?

•	 Why, exactly, are neural networks designed the  
way they are?

•	 What risks and challenges does AI pose?

•	 Where is AI headed next?

This primer builds upon Booz Allen’s 110 years of 
partnering with clients to address their most strategic 
challenges, 3 decades of data science leadership, and 
extensive record of delivering milestones in public-
sector AI deployment. As a leading provider of AI 
services2— we are uniquely equipped to share real-
world insights secured in arguably the most demanding 
and scrutinized proving ground for AI anywhere on the 
planet. Our broad and deep experience encompasses 
more than 200 AI services engagements with more than 
160 clients, including large AI contracts within the U.S. 
Department of Defense (DOD). By bringing these 
advanced perspectives together, we hope to create a 
clearer picture of AI for organizations everywhere.

While the advances in AI over the past decade have 
been amazing, we also believe future innovations will be 
even more impactful. Harnessed responsibly, they will 
help us grow prosperity, improve healthcare outcomes, 
transition to a more sustainable future, and maintain 
global security. Collaborating closely with our clients 
and partners, we are committed to being at the forefront 
of shaping this better future.

John Larson
Executive Vice President 
Booz Allen Hamilton Chief Technology Office

2024-2025
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What Is  
Artificial Intelligence  
And Where Does  
Generative AI Fit?
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appropriate responses in the form of text, images, audio 
and video, software code, music scores, and digital 
designs and models, among other outputs. It 
encompasses not only large language models (LLM) 
that power virtual assistants such as OpenAI’s ChatGPT, 
but also image algorithms that power applications like 
Midjourney, and increasingly, video generators like 
OpenAI’s Sora.

However, it’s important to recognize that the sum of 
GenAI’s impressive results would not be possible 
without the collection of relatively old parts that provide 
its foundation. For example, many of the components 
that inform today’s generative LLM systems are models 
and methods reconstituted from prior innovations—
transfer learning (2012),3 self-attention (2015),4 
transformers (2017),5 and reinforcement learning 
algorithms like proximal policy optimization (PPO) 
(2017).6 

This primer analyzes some of the basic mechanics of 
GenAI’s smaller parts to help build a greater 
understanding of how it works and why modern AI, in all 
its forms, exerts such transformative power. After all, the 
next big thing in AI is likely to be built from tools we are 
making today.

Let’s begin with a basic question: what do we mean by 
“artificial intelligence”? In its simplest form, AI allows us 
to create systems and machines that can perform tasks 
and answer questions that would normally require 
human intelligence. AI systems receive data as an input 
and produce some desired output—and the different 
processes for making that output define the different AI 
techniques.

Underpinning much of AI, ML encompasses the 
mathematical techniques used to automate pattern 
recognition, with ML algorithms being given many 
examples of correct outputs for specific inputs to try to 
mimic the process. AI includes traditional ML 
algorithms, like logistic regression, decision trees, and 
support vector machines, along with neural networks in 
the field of deep learning, like convolutional neural 
networks (CNN) and transformers. 

Researchers developed these methods to encode 
high-level strategies for how to solve problems. 
Common AI capabilities support applications such as 
virtual assistants, facial recognition tools, image 
labeling, search and summarization, and many more. We 
will delve into these topics shortly. 

This leads us to generative artificial intelligence (GenAI) 
specifically: GenAI is a type of AI focused on systems 
that can interpret commands and dynamically generate 

“�I propose to consider the question, ‘can machines think?’”
Alan Turing, “Computing Machinery and Intelligence,” 1950
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Alan Turing

A Timeline Toward The Rise Of 
Gen AI And Beyond
The year 1950 remains a pivotal one in AI’s evolution. 
That’s when mathematician and computer scientist Alan 
Turing introduced the Imitation Game (or “Turing Test”)  
in his seminal paper “Computing Machinery and 
Intelligence.”7 With the idea of a conversation in which 
machine and human become indistinguishable to an 
evaluator, Turing formulated and brought urgency to a 
complex question that still demands consideration 
today: “Can machines think?” Turing predicted that by 
the year 2000 humans would be able to program 
computers to play the Imitation Game at 70% accuracy. 

A few years later, in the summer of 1956, a small group of 
mathematicians and scientists met at Dartmouth 

College to kick off what is widely viewed as the birth of 
formal AI research. Research within the field at large 
continued productively for more than a decade. But 
despite the introduction of novel methods during AI’s 
initial Golden Age, a so-called “AI winter” set in 
throughout the 1970s and 1980s. During that time, AI 
interest, investment, and research floundered due to 
failures linked to machine translation, expert systems, 
and inefficient training algorithms.   

But as the 1990s approached, breakthroughs again 
proliferated. A key example: In 1987, the notion of a 
“connectionist architecture,”8 the predecessor 
framework to neural networks, was introduced. This was 
an early step in taking inspiration from biology in having 
multiple “layers” of processing, which increases the 
flexibility and capacity of a model compared to an 
equally large but “shallow” (i.e., one-layer) model. 

“Can machines think?” Turing predicted that by the year 2000 humans would 
be able to program computers to play the Imitation Game at 70% accuracy.

4



network (RNN) algorithm to more 
effectively “remember” and “forget.” 
Its use case was a predecessor to 
the algorithms we see now for LLMs. 

In 2012, research in computer vision 
expanded with the creation of 
AlexNet, an eight-layer CNN 
designed by the University of 
Toronto’s Alex Krizhevsky and Ilya 
Sutskever that introduced the ReLU 
non-linearity. It was trained on the 
now-famous ImageNet dataset and 
won the ImageNet Large Scale 
Visual Recognition Challenge that 
year with a top-5 error rate of 15.3%, 
more than 10 percentage points 
below the next competitor. The CNN 
is still used as the de facto computer 
vision algorithm to detect objects 
and classify and segment images. 

Another advance in NLP followed 
the next year, as Google published 
the word2vec algorithm,12 a 
so-called “skip-gram” model that 
can make predictions about how to 
complete partial sentences through 
its analysis of the surrounding words 
and their meanings. Models like 
word2vec introduced the idea of an 
“embedding” that is now a key 
component of all LLMs and that 
compresses the value of text 
information in vector 
representations. 

And in 2014, the advent of 
generative adversarial networks 
(GAN), which produce outputs that 
replicate the exact characteristics of 
a given set of training data, opened 
new possibilities but also risks 
related to AI image generation—
including the rapid production of 

highly convincing “deepfakes” that 
seek to fool audiences with 
manipulated content. 

Where are we now? As time passed, 
researchers developed thousands of 
variations of these algorithms.  
These contributions include more 
efficient ways for the neural network 
to learn, such as different functions 
to minimize error; novel layers, which 
introduce stability during training or 
increase computational speed; and 
setups that capture complex 
dependencies and representations 
within the data. Most recent 
advances in AI rely on innovative 
deep learning techniques using 
these neural networks, which we 
explore in more detail in the 
following sections.

Ultimately, all of this presents a 
paradox: AI continues to build upon 
(and accelerate) previous advances 
while also reflecting new 
approaches. In selecting use cases 
and applications, enterprises will 
need to weigh AI’s traditional 
deterministic approach against 
GenAI’s increasingly probabilistic 
nature. The latter enables the 
greater creativity and independence 
that have excited so many, albeit at a 
potential cost of assurance and 
control. As we will discover, modern 
AI requires new thinking on how to 
apply and safeguard the technology 
to augment and enhance human 
performance while minimizing 
harmful disruption and anxiety. 

Neural networks are the 
fundamental types of algorithms 
used in deep learning. Researchers 
found that an AI model could “learn” 
when they updated its weights—and 
gradually reduced the difference 
between the model’s predicted and 
demonstrated outcomes—through 
the technique of backpropagation, 
an error-elimination method 
introduced a year earlier. And in 
1989, computer scientist Yann 
LeCun introduced the first real-
world implementation of what he 
would later term a “convolutional 
neural network (CNN)”9 on U.S. 
Postal Service data for handwritten 
digit recognition.10 

With momentum gathering, other 
advances soon emerged that, 
together, helped drive and 
accelerate AI’s maturation and 
evolution: 

In 1997, IBM’s Deep Blue system 
clearly demonstrated AI’s potential 
to learn when it beat world 
champion Garry Kasparov at chess 
through the use of a supercomputer 
to rapidly search for and identify 
optimal moves. This began to spark 
the notion that computers can learn 
on their own, made even more 
powerful when AlphaGo beat the 
leading human champion in the 
game of Go.

In the same year, researchers 
revolutionized the field of natural 
language processing (NLP) with the 
introduction of the long short-term 
memory (LSTM)11 algorithm (Figure 
1). This was important because it 
enabled the recurrent neural 

5Copyright © 2025 Booz Allen Hamilton Inc.



From AI’s Golden Age  
To The GenAI Era

The Imitation Game, 
Alan Turing
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John McCarthy and Marvin Minsky 
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Figure 2: From AI’s Golden Age To The GenAI Era
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Figure 1: New model architectures. The CBOW architecture predicts the current word based on the
context, and the Skip-gram predicts surrounding words given the current word.

R words from the future of the current word as correct labels. This will require us to do R × 2
word classifications, with the current word as input, and each of the R + R words as output. In the
following experiments, we use C = 10.

4 Results

To compare the quality of different versions of word vectors, previous papers typically use a table
showing example words and their most similar words, and understand them intuitively. Although
it is easy to show that word France is similar to Italy and perhaps some other countries, it is much
more challenging when subjecting those vectors in a more complex similarity task, as follows. We
follow previous observation that there can be many different types of similarities between words, for
example, word big is similar to bigger in the same sense that small is similar to smaller. Example
of another type of relationship can be word pairs big - biggest and small - smallest [20]. We further
denote two pairs of words with the same relationship as a question, as we can ask: ”What is the
word that is similar to small in the same sense as biggest is similar to big?”

Somewhat surprisingly, these questions can be answered by performing simple algebraic operations
with the vector representation of words. To find a word that is similar to small in the same sense as
biggest is similar to big, we can simply compute vector X = vector(”biggest”)−vector(”big”)+
vector(”small”). Then, we search in the vector space for the word closest to X measured by cosine
distance, and use it as the answer to the question (we discard the input question words during this
search). When the word vectors are well trained, it is possible to find the correct answer (word
smallest) using this method.

Finally, we found that when we train high dimensional word vectors on a large amount of data, the
resulting vectors can be used to answer very subtle semantic relationships between words, such as
a city and the country it belongs to, e.g. France is to Paris as Germany is to Berlin. Word vectors
with such semantic relationships could be used to improve many existing NLP applications, such
as machine translation, information retrieval and question answering systems, and may enable other
future applications yet to be invented.
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Understanding A  
Simple Neural Network

9



Mimicking the structure of the human brain, a neural 
network is a key part of the specific ML technique called 
“deep learning.” Neural networks allow systems to 
approximate non-linear functions used to produce 
complex calculations involving highly variable 
relationships and outcomes that appear highly 
unpredictable. Understanding non-linear relationships 
is important as many facets of the real world are 
governed by often unknown factors. 

We’ll examine the technical underpinnings of neural 
networks using the simplest interpretation of such 
networks: a “multilayer perceptron” (MLP) or 
“feedforward neural network.” Here’s why we’re taking a 
closer look: Although the MLP is a fairly simple example 
of a deep learning algorithm, it is powerful and utilitarian 
and is used so much in AI that it has become a key 
algorithm in the backbone of LLMs like Anthropic’s 
Claude. 

Introducing The Multilayer 
Perceptron
When we architect neural networks—that is, the 
algorithms that enable deep learning—we have a variety 
of design choices to consider (Figure 3):

•	 Recurrent Neural Networks (RNN) focus on 
sequence-to-sequence inputs, such as sentences. 

•	 Convolutional Neural Networks (CNN) apply 
convolution that uses multidimensional filters to learn 
image maps. 

•	 Generative Adversarial Networks (GAN) provide 
frameworks where two or more neural networks 
compete against each other to accomplish tasks,  
such as generating synthetic training data. 

•	 Diffusion Models rely on a traditional U-Net15 neural 
network—which can harness limited data without 
losing speed and precision—for generating images 
and other media. 

10Copyright © 2025 Booz Allen Hamilton Inc.
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Kernel

Convolution or Pool
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Auto Encoder (AE)

Deep Convolutional Network (DCN)

Recurrent Neural Network (RNN)
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Generative Adversarial Network (GAN)

Feed Forward (FF)

Figure 3: Model Zoo16

11



Regardless of the apparent complexity of the neural 
network we choose, it is always just a large grouping of 
many smaller functions—essentially, “a small set of 
highschool-level ideas put together.”17 For example, in a 
basic neural network, the functions that perform 
low-level decision making at the feature-map level are 
called “non-linearities.” They are embedded within an 
equation to independently perform linear regression 
calculations. When combined in a neural network, these 
complex sets of linear regression equations can be 
stitched together to learn representations of images and 
sentences (Figure 4). 

MLPs often perform complex data classification and 
pattern recognition tasks. In the MLP depicted here, 
multiple composite functions are used to make a 

Output LayerInput Layer

Hidden Layers

L1 L2 Lm

O1

O2

hm1

hm2

hm3

hm4

hmnm

h24

h23

h22

h21

h2n2

h11

h12

h13

h14

h1n1

X1

X2

X3

Xp

prediction ŷ. Notably in this composition, the weights 
outputted from each layer (W^1, W^2, W^3) are the 
inputs to the next layer, like a loop fed into itself. 
Therefore, W^3 σ is a function of W^2 σ which itself is a 
function of W^1 σ, where the symbol σ represents the 
sigmoid (non-linearity) function—the well-known “S” 
curve—denoted as “a” for activation. 

Composition functions are simply a more formal way to 
explain what is often called “modularity.”18 Modularity is 
the ability to swap different non-linearities in and out, 
adapt the architecture for different layers and 
connectivity patterns, apply special blocks, and add 
regularization, normalization, and more.

Figure 4: A Feedforward Neural Network (Courtesy Of Quebec Ai)19

W 1˄ W˄2 W˄m

W˄m+1

12Copyright © 2025 Booz Allen Hamilton Inc.
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Entropy: Designing A Neural 
Network To Learn
An important aspect of these activation functions is that 
they are differentiable, meaning that their derivates—
their sensitivity to changes in the input data—can be 
calculated to guide the neural network toward making 
more accurate predictions. For example, we can fine-
tune the activation function to better fit the data by 
searching the space of all possible parameters or 
weights within the neural network. Gradient descent is a 
well-known optimization algorithm that minimizes errors 
by examining “loss functions” —formulas that minimize 
the difference between predicted and actual 
outcomes—to refine weighting. 

One example of a well-known loss function used to train 
neural networks is cross-entropy. In his 1948 paper “A 
Mathematical Theory of Communication,”20 researcher 
Claude Shannon (Figure 5) positioned information 
entropy, a precursor of cross-entropy, as a measure of 
uncertainty or randomness. A very “surprising” event 
rarely happens and therefore has a very low probability 
of occurring (e.g., 2%). On the other hand, an 
“unsurprising” event, one that happens frequently, has a 
high probability (e.g., 95%). For a single event, we can 
calculate its entropy. While a highly probable event like 
the Sun rising has low entropy (almost no surprise), an 
improbable event like two Suns rising would have very 
high entropy. 

Within our simple neural network, we can measure the 
average entropy across all events, or the cross-entropy21 

of a model on some data distribution. A correct model 
needs to be the least surprised by the unseen data. It 
should have low entropy because the algorithm has 
mapped all the feature distributions and has achieved 
good generalization. It “knows” unfamiliar events so well 
that it can expect them to occur. With entropy 
minimized, errors are less common and learning 
becomes more efficient.

“Backprop”: Training A Neural 
Network
We can use the errors calculated through the loss 
function as a source of feedback during 
backpropagation (sometimes shortened to 
“backprop”)—an error-assignment process that has 
been usefully compared to “a Kafkaesque judicial 
system” characterized by “rounds of recursive 
fingerpointing.”23

In backpropagation,24 the algorithm runs backward from 
output to input, assigning “blame” for the final error to 
preceding steps. This involves the use of calculus to 
compute the weights’ respective errors, layer by layer, 
where changes to the algorithm are calculated as 
gradients. Engineers can inspect the gradients to 
uncover an essential truth—whether the algorithm is 
learning or not. For example, if the gradients are 
consistently close to zero, we can say they are 
“saturated” and that the algorithm isn't learning (Figure 6). 

A simple neural network like this MLP relies on one loss 
function to determine how well the model fits the data. 
Changing the loss function can allow the network to 
learn different kinds of problems. But even the simplest 
neural networks provide the underlying foundation for 
many of the most transformational achievements of 
21st-century AI.

Sigmoid Function and it's Derivative

1.0 -

0.8 -

0.6 -

0.4 -

0.2 -

σ(x)

σ(x)d
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-4 4-2 20
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saturating

derivative close to 0
derivative  
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Figure 6: Gradients of a Sigmoid Function22

Figure 5: Claude Shannon
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Over the past decade, progress in AI research has 
accelerated dramatically, with significant advances 
shaping the modern AI that dominates today’s 
headlines. We profile several of the most influential here: 
GANs, deep reinforcement learning (DRL), diffusion 
models, ChatGPT, and MMAI. Many of these advances 
rely on a new way to encode the idea of “self-
supervision:” that the loss function (what the model 
learns) can be specified using only the original data—
with no human annotations or input required. Combining 
self-supervision on an enormous amount of data with 
human supervision on a small amount of data has been 
the key strategy for many of these advancements. 

2014: Generative Adversarial 
Networks 
Introduced by Ian Goodfellow in 2014, a GAN can create 
new data instances resembling the training data used to 

D

REAL

FAKEG
D(x)

Dloss

Gloss

“G” is the generator and “D” is the discriminator. 
Both are neural networks.

Figure 7: The Gan Algorithm25

develop it, such as text or images. GANs combine two 
functions—a generator and a discriminator—as neural 
networks (typically, or as any differentiable function) in a 
cat-and-mouse game that continually refines 
performance. 

Specifically, the generator strives to create new, prompt-
inspired data that is indistinguishable in quality from the 
training data. Meanwhile, the discriminator works to 
identify this so-called fake or generated data. The 
back-and-forth competition between the two functions is 
an adversarial process in which the output becomes 
increasingly realistic and independent of actual data 
(Figure 7).  

Through this process, GANs can learn high-dimensional 
mappings of complex data like videos, images, and text. 
For this reason, GANs were an important step toward the 
fully realized image- and text-generation capabilities of 
GenAI.

z

noise
D(G(z))

15



Copyright © 2025 Booz Allen Hamilton Inc.

2016: Deep Reinforcement 
Learning And AlphaGo
Developed by DeepMind in 2016,26 DRL reflects within a 
single neural network the concept of learning by trial 
and error along with the ability to learn from direct 
inputs in human-like ways. The neural network of the 
Google DeepMind AI named “AlphaGo,” which plays the 
strategy board game Go, was trained to learn while 
playing through DRL. 

On March 10, 2016, AlphaGo defeated one of the world’s 
top Go champions, Lee Sedol. This critical turn in the 
game’s 2,500-year history came when AlphaGo devised 
the now-famous “Move 37,” which had a 1-in-10,000 
likelihood of being played by a human (Figure 8).27

AlphaGo was trained in a supervised manner from 
160,000 human expert games along with DRL through 
games against itself, where it self-played 30 million 
distinct positions, each sampled from a separate game. 
Move 37 marked a groundbreaking moment because 
the AI had apparently designed its own creative 
strategy on the fly due to the way it was trained, 
crystallizing AI’s potential for ingenuity.

2020: Diffusion Models 
AI art generators like Stable Diffusion, DALL-E, and 
Midjourney have captured the world’s imagination by 
turning text prompts infused with descriptions and 
design information into photorealistic, high-resolution 
imagery. 

These art generators pair a language processing 
algorithm with an image generation algorithm to create 
this imagery. The language processing part uses 
OpenAI’s Contrastive Language-Image Pre-Training 
(CLIP), which has already been trained on 400 million 
image or text pairs. It learns to understand visual 
concepts from natural language, translating prompts 
into text tokens from the CLIP model that are passed to 
the diffusion model as an input supported by an 
attention layer within a GAN.

Diffusion models are newer approaches that can deliver 
more realistic results than the GANs that preceded 
them. This is because diffusion models are “conditioned” 
(Figure 9) to generate more sophisticated images, which 
involves adding and removing noise from the image in a 
controlled manner to teach the model.

Figure 8: Move37 Wikimedia Commons

Figure 9: How AI Art Models Work
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Let’s look more closely at how we train diffusion models. 
Figure 10 shows the basic schema of a diffusion model 
with two core processes. In orange, there is the forward 
process where “Gaussian” noise is added to a “clean” 
image (image X0in figure 10). This noise is gradually 
added to each subsequent image to destroy it over 
time, with a specific schedule dictating how much noise 
is added at each time step.

The green shows the reverse or “denoising” process 
that serves as the generative phase. Specifically, the 
diffusion model creates new imagery by removing 
extraneous noise, leaving only the prompted picture in 
its place. The AI element occurs here in the generative 
phase since a neural network (U-Net) is used to predict 
how much noise to remove at each time step, going 
backward.

Training diffusion models is non-trivial primarily due to 
the long iterative denoising process. For example, it’s 
estimated that training a state-of-the-art diffusion 
model can take 150 to 1,000 V100 days, meaning that it 
would take 5 days to create 50,000 samples (V100 days 
are a computing measure based on the output of a 
single NVIDIA A100 graphics processing unit [GPU]).28

Increasing the speed of generation is an active area of 
research focused on faster sampling strategies such as 
grid search and network compression,29 as well as 
post-training quantization and pruning.30 To put this into 
perspective, a recent study found that the cost of 
training frontier models has grown 2–3 times annually 
during the past 8 years, with the projected cost for 
building next-generation models reaching more than $1 
billion by 2027.31

XT Xt

T=1000 For exa: 
t=100 t=99

p (Xt-1|Xt)

Xt-1 X

“Noising” Process, q

q(Xt|Xt-1)

x

Figure 10: Diffusion Model Training Process32

“Denoising” Process, p Aka Generation/Reverse Flow

17Copyright © 2025 Booz Allen Hamilton Inc.



Copyright © 2025 Booz Allen Hamilton Inc.

2022: ChatGPT
ChatGPT is a well-known AI chatbot and virtual 
assistant developed by San Francisco-based startup 
OpenAI. When it first came out, the chatbot used the 
GPT-3 model architecture—specifically, GPT-3.5-
turbo—to generate content in response to prompts it 
had not been explicitly trained on. ChatGPT is the 
culmination of advancements from the original GPT to 
the current model, GPT-4.o (Figure 11). 

The key advancements leading to ChatGPT involved 
combining older ideas into a new system based on the 
2022 InstructGPT paper.33 The InstructGPT models 
were trained to promote alignment, a concept 
introduced by DeepMind in 2018,34 so that language 

Figure 11: A Timeline Of Gpt Models

20222021 2023 2024

GPT-3.5

Enhanced GPT-3 
model with 
knowledge base 
updated to  
June 2021

ChatGPT

Tool created from  
a fine-tuned 
GPT-3.5 model to 
interact with users 
concersationally

GPT-4

Introduces 
multimodality, 
internet browsing, 
and 8x context 
window increase

GPT-4.0

Greater efficiency, 
best vision and 
performance 
across non-English 
languages

2017 2018 2019 2020

Transformer

Created by Google, 
introducing the 
“Attention 
Mechanism”

GPT-1

The first iteration  
of the GPT-n   
series of LLMs

GPT-2

This iteration 
doubled the  
training corpus   
size of previous 
models

GPT-3

The most 
advanced model 
to date with many 
of the capabilities 
we know today

models would output responses that act in accordance 
with the user’s intention. 

To do so, the GPT-3 base model was fine-tuned using 
reinforcement learning from human feedback (RLHF) 
developed in 2017 by OpenAI.35 With RLHF, humans 
provide feedback on an AI system’s behavior that is 
used to define an AI task as opposed to crafting a 
manual reward function. For ChatGPT, human 
preference is the reward signal collected from GPT-3 
outputs that are scored by humans from best to worst. 

The three-step process consists of (1) a pre-trained 
GPT-3 model on human-demonstrated desired behavior 
of input prompts; (2) a supervised fine-tuning (SFT) 
model that trains a reward model (RM) based on human-
preferred language outputs, such as instruction-output 
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pairs; and (3) the optimization of a 
reinforcement learning (RL) 
algorithm by fine-tuning the SFT 
for alignment—improving the text 
outputs so that they are natural-
sounding and safe. (See page 25 
for a detailed discussion of 
prompt engineering, a 
component of SFT.) 

The algorithms that power 
ChatGPT—LLMs and the RL 
algorithm of Proximal Policy 
Optimization (PPO)—have 
existed for a while. Innovative 
research in the field of NLP began 
to emerge a decade ago when 
neural machine translation was 
introduced using an attention 
mechanism36 in RNNs.37 In 2017, 
the attention function was a key 
design element in the 
transformer architecture 
introduced in the influential paper 
“Attention Is All You Need.”38

The transformer neural network 
architecture, which specializes in 
sequence-based inputs (such as 
sentences), is the backbone of 
LLMs (Figure 12). Multiple blocks 
of attention functions are 
integrated into the transformer 
architecture, along with 
mappings of word position and 
values, to weigh the importance 
of different parts of the input 
sentence. Unlike RNNs that 
preceded transformers and had 
to process data one at a time, the 
transformer architecture 
processes data in parallel. This 
enables it to handle longer 
sequences (like sentences) and 
context, which is why it has 
achieved such dramatic success 
in machine translation, text 
summarization, and image 
captioning. 
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2022: Multimodal AI 
In the early 2000s, the rise of big data made waves 
across industry. The three v’s of volume, velocity, and 
veracity became a tagline when it came to ML, along 
with the notion of “unstructured data.” To that extent, 
many standalone datasets for imagery (e.g., ImageNet), 
NLP (e.g., the popular 20 newsgroups dataset), and 
audio (e.g., LibriSpeech) were available for training. 
However, much of today’s data is not only complex, 
voluminous, and streaming, but also multimodal,39 
meaning that multiple data types are necessary to train 
AI algorithms simultaneously. Examples of multimodal 
datasets include image captioning (e.g., MS COCO), 
question-answering (e.g., YouTube2Text), and semantic 
analysis (e.g., Wikimedia Commons).

The notion of multimodal data and even MMAI is not 
new, and as a result, it’s difficult to pin down the exact 
date when MMAI took off. But what makes MMAI 
valuable are recent use cases to improve the accuracy 
of prediction by combining multiple signals instead of 
relying on just one. For example, the National Institutes 
of Health’s National Cancer Institute is using MMAI to 
predict chronic cancer pain by fusing visible and 
thermal imagery, text, and audio, as opposed to relying 
solely on facial images.40

MMAI also offers generalized frameworks to solve tasks 
less explicitly (i.e., “zero-shot” or “few-shot” learning). 
Early models for affective, or sensory, computing 
incorporated audiovisual speech recognition. Almost all 
of today’s AI apps for music, movies, television, retail, 
autonomous driving, health, food, and other areas of life 
rely on fusing together multiple data types—
multimodalities. In this respect, a single algorithm that 
may consist of one neural network (such as a 
transformer) or multiple neural networks (such as a 
CNN and LSTM) and will accept multimodal data as 
inputs all at once.

As previously discussed, one of the most popular 
multimodal algorithms is OpenAI’s CLIP algorithm,41 
which is used in the pipelines of AI art generators like 
DALL-E and Midjourney. As a state-of-the-art visual 
classifier, CLIP learns visual concepts directly from 
natural language. It is pre-trained on hundreds of 
millions of pairs using two models simultaneously. CLIP 
uses an image encoder like a vision transformer42 to 
learn image features and a text encoder (a 63 million-
parameter transformer) to predict the correct pairing of 
an image and text. Unlike traditional models for image 
captioning, CLIP predicts the most probable caption 
without being explicitly trained on image/text pairs and 
can therefore accomplish many computer vision tasks 
in a “zero-shot” fashion. 
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dynamic responses to prompts or questions. The 
process of training LLMs involves numerous steps.

Seemingly every week, a new LLM is released that 
advances current techniques but minimizes compute 
requirements, boosts performance, or cleverly mixes 
models. The complex branching of the LLM family tree 
suggests the series of interrelated efforts that led to 
powerful models like Anthropic’s Claude, Cohere, 
Google’s Gemini, Meta’s Llama, Mistral, and OpenAI’s 
GPT-4.o (Figure 13).

But what, exactly, goes into optimizing the performance 
of the powerful GenAI systems that have resulted from 
this ongoing progress? Here are a few ways we can 
improve LLMs with fine-tuning, agents, RL, prompt 
engineering, and retrieval-augmented generation (RAG).

GenAI might seem almost magical as it rapidly pulls off 
creative and analytical feats that take far more time for 
human beings to accomplish. In this section, we’ll 
unpack some of the technical capabilities that operate in 
concert to bring GenAI, and its profound impacts, to life. 
We’ll focus on large language models or LLMs, which are 
the foundation for today’s GenAI systems. 

Large Language Models
LLMs are general-purpose deep learning models that 
summarize, classify, and produce content. They are 
trained on massive amounts of data, often petabytes in 
size, which creates a vast number of trainable 
parameters (i.e., 1 billion or more) for generating 

Figure 13: The Modern Evolutionary Tree Of Llms43
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Fine-Tuning
Fine-tuning originated as a transfer learning method for 
NLP tasks. It enables engineers to augment the 
knowledge of a large model (such as an LLM), which has 
been pre-trained on large volumes of data, with a much 
smaller dataset in order to customize the outputs. 

Data for fine-tuning LLMs is typically offered in 
question-and-answer pairs that resemble an extremely 
minimal set of training data. The underlying data can be 
general in nature to approximate human knowledge or 
targeted to specific domains to improve performance 
and precision. Since the foundational LLM has been 
pre-trained on an entire corpus of semantics and syntax, 
it can infer patterns based on the minimal samples. Here 
the LLM retains most of the knowledge it gained through 
pre-training (these parts of the model are “frozen”)—but 
the rest of the LLM updates with new information. 

Fine-tuning a foundation model involves updating some, 
but not all, of its weights to better perform a specific 
task. However, if overdone, this process can lead to 
“catastrophic forgetting,” where the model loses its 
ability to perform well on tasks it was previously good at. 
This is a potential risk for highly complex government 
mission applications for the U.S. national security 
community or DOD, for example, as they adapt 
commercial models to some of their highly specialized 
requirements. Balancing fine-tuning requires adjusting 
just enough to improve performance on a new task 
without erasing the original knowledge to ensure the 
model remains versatile and effective across various 
tasks.

One effective fine-tuning approach is using low rank 
adaptation (LoRA), which was introduced by Microsoft 
as a parameter-efficient process.44 The key idea with 
LoRA is to store and load fewer parameters (e.g., 
“weights”) for each fine-tuned model, while keeping the 
pre-trained base LLM model weights frozen (i.e., 
unchanged). Since fine-tuning for a specific task—for 

example, learning the personality of an innkeeper in 
Dungeons & Dragons—is fairly narrow, the full set of LLM 
weights does not need to be completely updated, thus 
improving model performance without undermining 
proficiency in earlier tasks. 

Agents
With increased capability over previous ML models, 
LLMs, in concert with other software, may be able to 
assume the role of an independent actor (or agent) 
within a larger system. Deploying LLMs in this 
configuration could partially automate operations or one 
day give rise to fully autonomous systems. Agent-based 
systems enable this.45 

Agents could perform various tasks when automated, 
including planning and executing, applying memory, and 
using tools (e.g., opening a website; formatting text) 
(Figure 14). The figure shows the four components the 
agent leverages: tools, memory, planning, and action. In 
a traditional setup, the agent will have access to 
non-LLM software such as application programming 
interfaces that can open calendars or search the 
internet. The use of these tools is triggered by a set of 
actions that prompt the agent to call them. 

The agent uses planning to do more with the prompts by 
reasoning through and evaluating a series of steps or 
outcomes. This might include decomposing a larger, 
broader prompt into a series of smaller goals where 
each output is then a new answer or result. Memory 
comes in the form of vectors where the prompt is tied to 
a series of outcomes such as “false” or “true” to store 
history about the success of tried attempts. The 
combination of agent planning and memory is an 
exciting area of engineering that is enabling LLMs to be 
used for more than chat or summarization—such as 
imitating the reasoning that occurs from training 
challenging RL algorithms. 

Calendar ( )

ReflectionCalculator ( )

Self-criticsCodeInterpreter ( )

Chain of thoughtsSearch ( )

Subgoal decomposition...more

AGENT

Short-term memory

Memory

Action

Tools Planning

Long-term memory

Figure 14: LlM Agents (Reference: Lilian Weng, LlM Powered Autonomous Agents)46
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To provide an agent with operating context, engineers program the agent with a set of constraints (i.e., rules)  
it must adhere to, commands (i.e., tools) it might use (e.g., retrieving a spreadsheet), and sub-tasks it must 
complete (e.g., itemization, writing, and descriptive analysis). LLMs can complete difficult tasks and vary 
significantly from traditional “bots” such as non-AI tools like robotic process automation software (Figure 15).

Figure 15: Comparing Robotic Process Automation With Large Language Models

RL has a long history, and it emerged out of established, 
multidisciplinary methods in computer science, 
psychology, control theory, and statistics.47 The 
fundamental principle is that an agent will connect to an 
external environment. As the agent interacts with the 
environment, it will take an action. 

What will the agent ultimately be designed to do? If the 
environment were a game of chess, for example, the 
agent would scan the board for all possible moves. Then 
it would need to take action to achieve a goal, like 

putting the opponent’s king in check. After that it 
would receive feedback—a “reward” or a penalty, such 
as losing a piece on the board. The more it plays, the 
more it learns about how to play. One advantage of RL 
models is the way data is collected for training—it 
gathers data dynamically through these interactions 
with the environment. 

RLHF is another application of RL, but this time for 
improving the alignment of generative LLMs as 
detailed in the InstructGPT paper.48 RLHF is a key 
component of state-of-the-art generative LLMs. It 
consists of three basic steps:49 

1   �Researchers create a database of prompts and ask 
humans to manually write responses to each 
prompt, creating a rich set of instruction-output 
pairs. This dataset can then be used to fine-tune a 
pre-trained base model (e.g., GPT-3) in a supervised 
fashion (i.e., with an SFT). 

2  �For each prompt, the SFT outputs several 
responses. A human ranks the responses based on 
their preference—and, with that, we now have a 
dataset of prompt, response, and associated 
preferences. This dataset informs the design of an 
RM algorithm that accepts a sequence of text and 
returns a numerical reward that represents human 
preference. 

3  �The Proximal Policy Optimization (PPO) model50 

uses RL and the reward scores outputted by the RM 
from its regression layer to fine-tune the SFT. Today 
a variety of RL models are used beyond PPO. But in 
the traditional InstructGPT framework, PPO has 
been shown as effective.

Reinforcement Learning With 
Human Feedback
Essentially, RL is an area of ML where agents learn 
behavior patterns via trial-and-error interactions with a 
dynamic environment (Figure 16). RL has famously been 
used to train algorithms to play games at levels far 
beyond human ability, as well as to execute robotics, and 
increasingly, to align preferences for GenAI output. 

Robotic Process Automation Large Language Models

•	 Designed to automate specific, pre-defined tasks in 
business workflows.

•	 Rule-driven, executing only the precise steps that 
programmers have explicitly outlined  
(e.g., entering data).

•	 No ability to learn or adapt independently.

•	 Designed to orchestrate a chain of actions in concert 
with other agents.

•	 Broadly responsive to a series of simple user prompts, 
performing an array of often complex tasks (e.g., 
crafting analyses).

•	 Capacity to learn how to reason.

Figure 16: A Traditional Reinforcement Learning 
Framework51
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Figure 17: AI Art Generators Vary, But Effective Prompting Always 
Improves Images

When there are so many RL 
algorithm choices, why is a PPO 
model so useful? 52 PPO offers 
greater training stability by 
eliminating the need for large policy 
updates. Because the PPO algorithm 
enforces a series of constraints that 
limit how large the learning steps 
can be, it updates the policy using 
smaller steps, which is likely to 
converge to a more optimal solution. 
The idea is to control the learning to 
avoid updating the RL model’s 
weights in a destructive way.

Prompt Engineering
While anyone with an internet 
connection and email address can 
use ChatGPT and other commercial 
LLMs immediately, skilled users who 
understand how the underlying 
model works will extract significantly 
more value from this technology. 
This is because expert prompt 
engineering helps steer the LLM to 
produce outputs that users can, with 
confidence, directly integrate into 
codebases, databases, and various 
components of a system. Better 
prompting improves responses in 
image generation as well as text 
generation and anywhere prompts 
generate content (Figure 17).

Midjourney With A Poor Prompt

“A Delta IV heavy rocket”

Midjourney With A Good Prompt

“I’m a NASA photographer. I just 
took a picture of a Boeing Delta IV 
heavy rocket lifting off from the 
launch pad at Cape Canaveral on a 
beautiful sunny day.”
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Prompt Template Purpose

“As a [insert profession/role]” Frames the LLM’s knowledge.

“In the style of [insert famous person’s name]” Enables style matching.

“Explain this topic for [insert specific age group or job].” Defines the audience.

“For the [insert company/brand publication]” Adjusts voice and tone.

“Let’s think step by step.” Elicits a process description.

“Why do you think that?” Asks the LLM to explain its reasoning.

“Thinking backwards” Helps the LLM retrace its steps when it keeps 
outputting incorrect conclusions.

Negative prompts: “Do not use numbered lists.” “Avoid 
acronyms.”

Tells the LLM what to exclude from its response.

Specify references: “Include only a reference that is 
widely cited in the literature.”

Improves accuracy; avoids the invention of fake 
references.

1.	 Show and tell—be very clear in the instructions.

2. 	Break work into smaller, discrete chunks.

3. 	�Provide high-quality data—give good examples 
and proofread prompt instructions.

4.	� Prompt the LLM to check and improve its own 
output.

	+ Explicitly state the desired focus, format, style, 
intended audience, and text length.

	+ Create a list of topics or points to cover.

	+ State the perspective from which the text should  
be written.

	+ Specify requirements, such as “Add as many  
quantifiable references as possible.”

	+ Break up prompts for long-form content into  
small pieces.

	+ Adopt a coder’s mindset of “programming a 
machine,” not “conversing with a human.”

	+ Use cheat phrases for efficiency (Figure 18).

There are four basic principles for prompts 
that every user should adhere to:

Considering a few additional guidelines can 
further improve results:

Figure 18: Some Useful LLM Cheat Phrases
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Retrieval-Augmented 
Generation
A final way to enhance standard language model 
responses is by using RAG to incorporate external, 
relevant information into the generation process. 

Unlike traditional models that generate responses 
based solely on their training data, RAG leverages a 
database search to enrich the response to a user’s 
prompt. In contrast to standard language model 
generation, where an LLM responds to a prompt based 
on the content on which it was trained, RAG exposes the 
LLM to additional, context-relevant information that can 
be used alongside a prompt. The LLM accesses this 
information by searching a database of content using 
the user’s initial prompt. This happens with semantic 
search, which is the way most search engines find 
content, or through a vector search. 

How Vector Search Works
A component of the broader semantic search 
process, vector search is a method for finding 
text that is numerically similar to a user’s 
prompt. Instead of focusing on keywords, this 
method finds similar or related concepts that 
would not normally appear as synonyms. In 
vector search:

•	 Chunks of text are compressed into fixed-
sized lists of integers known as 
“embeddings.” 

•	 The user prompt is also “vectorized” or 
“embedded” into a similar list of integers. 

•	 The two embeddings can then be compared 
to see how close their meanings are.

•	 Through these comparisons, vector search 
returns the most similar piece of content. 

Semantic searching is more complex and 
requires more computation to determine the 
intent and context behind text. As a result, 
vector searches are often preferable to 
semantic searches when time or compute 
resources are limited.

RAG is particularly important when an LLM 
must be factually correct or consistent with a 
corpus of information on which the foundational 
model was not trained. For example, a model 
used to make healthcare recommendations 
could be improved by granting it access to 
medical information, such as common 
procedures, symptoms, or given appropriate 
data protection, the patient’s medical history. 
Providing the model with factual content 
relevant to the user’s request can reduce the 
likelihood of a hallucination (see the “Generative 
Hallucinations” section of this primer), not unlike 
how humans can easily make mistakes when 
relying entirely on their memory but can avoid 
those mistakes by referencing written material. 
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Accelerated Computing
Hardware Innovations That Power AI
•	 Accelerated computing goes hand in hand with 

AI. Harnessing complex AI models requires a 
basic understanding of how hardware such as 
GPUs is leveraged not only to train AI models but 
also to run prediction and inference. While some 
traditional ML algorithms (such as support vector 
machines) do not require specialized hardware, 
the modern AI algorithms discussed in this 
primer require training and inference on a 
GPU—and often several.

•	 A GPU is a specialized processor that breaks up 
tasks and runs them in parallel using thousands 
of cores to spread out mathematical operations 
for tasks like deep learning and graphics 
rendering. A NVIDIA A100 GPU, for example, 
consists of 6,912 cores, and its RTX 2080 Ti GPU 
consists of 4,532 cores.

•	 Today’s image classification models can run on a 
single GPU with as few as 11 gigabytes of video 
RAM (VRAM), which is similar to the RTX 2080 Ti. 

However, algorithms such as traditional 
transformers are computationally expensive to 
train and require more VRAM and capacity.

•	 When algorithms are computationally expensive, 
understanding GPU speed is essential. One way 
to measure computational speed is through the 
floating-point operations per second (FLOPS) 
metric. While the RTX 2080 Ti performs at 
approximately 13 terraFLOPS, an A100 delivers 
312 terraFLOPS. 

•	 A high volume of computational operations can 
unacceptably slow training times. For example, 
training GPT-3 (175 billion parameters) on 8 
NVIDIA V100 GPUs would take 36 years. 
Compare this to training it in 7 months using 512 
V100s.53 

•	 As AI models become increasingly expensive due 
to their size and capacity to learn complex data, 
GPU manufacturers are releasing processors 
capable of scaling parallelism and decreasing 
latency, while AI software is also being offered to 
manage the neural network itself. 
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When To Use GenAI 
Organizations can use GenAI to operationalize any 
number of applications, from customer service 
chatbots and software coding agents to tools for 
scientific discovery and policy adjudication. Many of 
these use cases are supported by GenAI’s ability to 
provide automated knowledge and data management 
encompassing a series of integrated functions:

•	 Search, aggregation, and summation

•	 Interpretation, analysis, and synthesis

•	 Generation, prediction, and interaction

•	 Iterative design and development

Leveraging these capabilities creatively can unlock a 
host of new possibilities, as we are witnessing today. 
When we use them as a computational tool, GenAI 
algorithms offer a sophisticated means of unsupervised 
learning (i.e., GenAI methods generate images and text 
not from reference samples but from learned 
representations of data). 

Yet GenAI encompasses more than applications like 
ChatGPT that may be most useful for purely generative 
outputs. For example, in a lab setting, researchers can 
use GenAI algorithms to generate a code bank of labels 
that represent human motions (Figure 19). Encoding the 
action of a person kneeling on the ground and standing 
in MotionGPT54 takes much less time than labeling by 
hand every step in this process (e.g., kneel, kneel higher, 
slightly squat). Likewise, VistaMorph55 is an example of 
two GANs working in a pipeline to calculate warp, zoom, 
and perspective when the actual coordinates are not 
available, especially across millions of images.  

MotionGPT—GPT to generate human motion

VistaMorph—GANs to learn how to align images

Can you generate a motion that a person 
kneeling on the ground gets up?

Describe the motion of 
someone as you will.

A person kicks two times on his left
then kicks forward two times.

A man stands and moves his left leg back-
ward, then try to throw something hard.

Can you translate this motion to text?

Can you generate more from this motion?

Figure 1: MotionGPT can address diverse motion-relevant tasks uniformly given different instructions.
We provide the results on text-to-motion (the upper left), motion captioning (the bottom left), motion
completion (the upper right), and the language question-to-answer (the bottom right). The left to right
of motion represents the time order. Blue motion denotes the input, and yellow is the generation.

Two challenges are crucial and need to be solved for pre-training a promising motion-language model.
The first is modeling the relation between language and motion, and the second is building a uniform
multi-task framework that can generalize to new tasks. Fortunately, human motion exhibits a semantic
coupling similar to human language, often interpreted as a form of body language. Building upon
this observation,we follow vision-language pre-training from BEiT-3 [52] to treat human motion as
a specific foreign language. By integrating motion and language data together and encoding them
within a single vocabulary, the relationship between motion and language becomes more apparent.
Therefore, with recent significantly larger-scale language data and models, the motion-language pre-
training has great potential to improve the performance on motion tasks. Meanwhile, this pre-training
on language enables textual instructions like prompts in InstructGPT [28] and makes the model more
versatile and user-friendly for various motion tasks.

In this work, we propose a uniform motion-language framework, namely MotionGPT, that leverages
the strong language generation and zero-shot transfer abilities of pre-trained language models for
doing human motion-related tasks. To enable MotionGPT to comprehend and generate human-like
motions, we first learn a motion-specific vector quantized variational autoencoder (VQ-VAE) model
to construct “motion vocabulary”, akin to English vocabulary and then convert raw motion data into a
sequence of motion tokens. These tokens are then processed by a pre-trained language model [38, 5]
that learns the underlying grammar and syntax of the motion language, as well as its relationship with
the corresponding textual descriptions. To effectively integrate language and motion in MotionGPT,
we design a two-stage training scheme. We first pre-train the language model on the raw motion
dataset to learn the basic grammar and syntax of the motion language. For prompt tuning, we
fine-tune the language model on an instruction dataset, which contains both textual descriptions and
motion data, to learn the correlation between the two modalities. Extensive experiments demonstrate
that MotionGPT achieves state-of-the-art performance on text-to-motion, motion-to-text, motion
prediction, and motion in-between.

We summarize our contributions as follows: (1) We propose a uniform motion-language generative
pre-trained model, MotionGPT, which treats human motion as a foreign language, introduces natural
language models into motion-relevant generation, and performs diverse motion tasks with a single
model. (2) We introduce a motion-language training scheme with instruction tuning, to learn from
task feedback and produce promising results through prompts. (3) We propose a general motion
benchmark for multi-task evaluation, wherein MotionGPT achieves competitive performance across
diverse tasks, including text-to-motion, motion-to-text, motion prediction, and motion in-between,
with all available codes and data.

2

Figure 19: Human Motion And Image-Alignment Tasks56,57,58
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However, with all the media hype GenAI has received, it 
can be difficult to remember that GenAI is merely a 
tool—albeit an advanced one—that occupies a new 
space in the arsenal of AI algorithms. While GenAI can 
be applied to a variety of challenges, it cannot solve 
every imaginable problem. For this reason, it’s best to 
avoid thinking of it as the solution for all cases, 
especially considering the continually expanding utility 
of traditional AI (Figure 20). 

Figure 20: When To Consider GenAI For A Use Case

Traditional AI Generative AI

Data Requirements. Volume and quality of data 
needed for accuracy. •••• •••••
Expertise Needed. Level of specialized knowl-
edge required to use effectively. ••• •••••
Computational Costs. Resources and expenses 
for processing and running models. •• •••••
Time to Deployment. Duration from development 
to operational use. ••• ••••
Interpretability. Ease of understanding model 
decisions and outputs. ••• •••••
Output Accuracy.Precision and reliability of the 
generated results. •• •••
Output Creativity/Reasoning.  
Ability to generate novel ideas and logical 
conclusions.

••••• •

Output Controllability. Degree of influence over 
generated results. • •••
Generalizability. Ability to apply learned knowl-
edge to new, unseen data. •••• •

• Well-suited application of the technology with a low threshold to implementation

••••• Less optimal use of the technology with a high threshold to implementation
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Creativity Versus Certainty
In general, use cases that require definitive answers 
such as medical diagnoses, network security 
monitoring, or supply chain optimization may be better 
suited to traditional AI solutions. In contrast to 
traditional AI models, which are deterministic, GenAI 
models are, by design, stochastic, delivering outputs 
that are probabilistic in nature and often resulting in 
some randomness or variability in their responses. This 
GenAI characteristic is why, given the same exact input 
or prompt, the output will vary even when users are 
looking for a single, authoritative result. Use-case 
analyses should factor in this critical difference to allow 
organizations to accurately calibrate operational and 
mission risks. For example, traditional AI is a better—
and less risky—choice for use cases where the problem 
is well-defined and has specific rules and boundaries, 
like automating quality control in manufacturing using 
image recognition or detecting fraud across financial 
institutions. Assessing the tradeoffs across the 
available AI types will help organizations identify 
whether GenAI or other forms of modern AI offer the 
better approach.

AI Operations
Keys To Seamless Deployment  
And Scaling
As models grow more complex, different 
components and pipelines must be blended in 
a manner that scales and accounts for changes 
that may cause downstream impacts over time. 
Collaboration across teams results in 
enterprise-ready deployments faster, with less 
overall effort, and with lower operations and 
maintenance costs that drive down the total 
cost of ownership. 

•	 Fielding enterprise-class AI systems 
requires the application of modern software 
engineering practices for continuous 
integration and continuous delivery to 
facilitate reliable, high-quality deployment of 
AI models.

•	 However, AI systems differ from standard 
software delivery efforts because of their 
inherently recursive nature. In accounting for 
this difference, data scientists leverage an 
exploratory-analysis process to understand 
the data available, experiment with 
appropriate data preprocessing, and train/
test models.

•	 The data scientists and AI engineers then 
work together to harden science artifacts via 
software engineering. Specifically, data 
preprocessing routines are extracted into 
modular, reusable software components that 
take advantage of modern programming 
techniques. These techniques include 
parallelization of processing and the use of 
DevSecOps to achieve repeatability, 
testability, and scalability. 

•	 As stakeholders request more standards for 
governance and transparency, toolkits to 
check off compliance with ethical AI 
guidelines are needed. 

•	 Finally, system tools to scan for malware and 
assess models’ security fitness help thwart 
malicious actors that seek to poison and 
compromise AI models early  
in the process.
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Recognizing AI’s Limits 
And Challenges
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GenAI’s strength is its ability to respond dynamically 
with distinct replies to each unique prompt along with its 
potential to learn and improve. Not surprisingly, these 
strengths also introduce constraints and challenges that 
can impact the accuracy, relevance, and integrity of 
these responses. What special GenAI-related risks 
should organizations be aware of?

AI Bias  
For several years, critics have scrutinized AI for its 
vulnerability to bias that causes models to output 
“unfair” decisions. Since most Western AI models, to 
date, share the same datasets (e.g., ImageNet, MSCOCO, 
CelebFaces, Wikipedia, Books Corpus), any such biases 
could become entrenched in production systems 
worldwide. While there is no standard definition of 
“fairness” in AI, a useful shorthand is “the absence of any 
prejudice or favoritism toward an individual or group 
based on their inherent or acquired characteristics.”59 
Occurring as a result of the AI algorithm, user interaction 
with the model and the data used for training bias can 
drive unfair AI outcomes.

Ideally, an AI tool would not tend toward any human, 
systematic, or institutional bias—but it is not possible to 
entirely eliminate such bias. Given this reality, it is the 
responsibility of each organization to recognize inherent 

bias, mitigate as much as possible, and ultimately 
provide transparency to users and stakeholders (Figure 
21). The latter point is especially important, given the 
prevalence of bias embedded across society, as it allows 
users to make conscious decisions about how to 
interpret the data.

There are several forms of bias, including:

•	 Measurement bias that comes from how certain 
features are used as mismeasured proxy indicators.  
An infamous case is using prior arrests in the 
COMPAS prediction tool as a measure of “riskiness.”   

•	 Simpson’s Paradox, a statistical phenomenon where 
a trend can appear, reverse, or disappear based on 
combining groups of data.  

•	 Algorithmic bias, where bias is injected by the 
algorithm as a result of the model’s architecture and 
training parameters.  

•	 Historical bias from sociotechnical issues that seep 
into data generation even prior to sampling, such as 
search results revealing fewer women chief executive 
officers than men due to less representation in the 
workforce during a specific time.  

•	 Population bias amplifying demographic differences 
in a user population (e.g., more women use Pinterest 
than men, whereas men are more apt to use X/
Twitter).  
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While today’s data scientists and ML engineers draw 
upon significant experience in addressing and 
mitigating bias, the rapid pace of AI evolution and the 
expanding scale of models create unprecedented 
challenges. Enterprises can take steps to address bias 
by ensuring the use of a diverse and robust dataset. It is 
also crucial for organizations to involve key 
stakeholders throughout the lifecycle of an AI tool, from 
conceptualization through its eventual 

decommissioning. Beginning with the initial business 
use case and advancing through substantive 
development, decision making, and continuous 
monitoring, stakeholders should have a clear 
understanding of the AI’s function and role at each step. 
This approach facilitates informed decision making and 
enhances transparency and accountability to monitor 
for and address any underlying biases in the AI’s output.

Bias Scenario Potential Risks Key Questions Mitigation Strategy

Datasets that span several 
years may be outdated. 

Bias can unduly impact older 
data due to poor processes, 
manual input methods, poorly 
documented changes to 
applications and workflows, 
and lack of annotation of the 
associated datasets.

What data elements are 
planned for collection, and 
how are they essential for the 
system’s functionality?

How does the system design 
ensure that there is no 
excessive data collection? 

Pair data scientists with 
business process experts to 
create AI R&D teams that work 
to understand the data 
sources, relationships, 
meaning, and impact of 
business process changes 
before presenting results.

New/unidentified sources of 
bias may emerge with ongoing 
use.

The risk of encountering new 
or previously unidentified 
biases increases as AI 
applications scale and 
process larger volumes of 
data over time.

What biases could  
potentially emerge from 
subtle correlations or patterns 
in the data that were not 
apparent during initial 
training?

Continuously monitor  
and reevaluate model 
performance and decision- 
making processes, include 
metrics to determine impacts 
to equality from the beginning, 
and prepare for those 
measures to change as the AI 
program evolves. 

A model’s inherent  
prejudicial assumptions  
can yield bias.

This can result in inequitable 
outcomes regardless of the 
nature of the training dataset. 

What methods will the model 
use to detect and rectify 
biases, particularly those that 
arise from data inputs or 
algorithmic structure?

What approaches will the 
model use to ensure fairness 
in its outcomes?

Design and continuously 
evaluate a stakeholder- 
agreed process to integrate 
equity into the AI model, 
considering the full range of 
the model’s effects on various 
societal groups.

Bias or inequality can emerge 
as a result of failing to properly 
ensure transparency regarding 
AI usage. 

Users may unintentionally 
introduce bias into 
AI-generated products if they 
don’t understand the data 
sources, types, and usage 
patterns.

How are user consent and 
notice mechanisms described 
in the system design?

What measures are planned 
for ensuring transparency in 
data usage?

Ensure that data produced 
within AI models is labeled as 
such. Disclose the use of AI 
when disseminating 
AI-generated material.

Figure 21: Representative Bias Risks And Mitigations
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Generative Hallucinations
When AI models produce coherent grammar, but 
nonsensical content, we tend to call this a 
“hallucination.” It’s an anthropomorphic interpretation of 
the algorithm—that it must have “hallucinated” facts, 
references, names, and dates that just are not real and 
woven them into a grammatical sentence. Yet from the 
AI’s perspective, there is no difference between a 
hallucination and an accurately cited, factual statement. 

This is because LLMs are trained to be autoregressive, 
meaning they predict the next likely word from the 
previously seen words. This training objective makes no 
distinction between fact and fiction—provided the next 
word looks plausible, it is all the same autoregressive 
goal. It is true that factual data, having been part of the 
training of the algorithm, is more likely to look correct, 
but the AI feels no constraint to faithfully reproduce any 
particular fact. 

AI hallucinations are a natural consequence of how 
GenAI works today. During the training of generative 
imagery models such as GANs and diffusion models, 
hallucinations, and distortions—such as stippling 
patterns, checkerboard effects, and/or low diversity of 
images—often creep into the learning process. In 
general, there are two forms of mislearning that occur 
within GenAI models: mode collapse and model 
collapse. 

MODE COLLAPSE
Specifically in GANs, hallucinations can be caused by 
“mode collapse,” a term introduced in 2013, which 
occurs when the model fails to converge, meaning it can 
no longer learn.60 The outcome of mode collapse is the 
generation of images that have very low diversity, 
meaning that the bulk of generated images tend to favor 
one kind of style or object, as opposed to the variety of 
others it was trained on. 

Why does this happen? As with all generative models, 
the GAN essentially plays a game of moving data 
distributions between what is real and what is fake. This 
game is constrained by complex optimization formulas 
that negotiate learning between the generator and the 
discriminator (see the “Advances in Modern AI” section 
for more information). Essentially, in this game, the 
generator will cheat and discover that there are certain 
distributions (“modes”) that fool the discriminator time 
and time again. This “mode seeking”61,62 behavior 
compels the generator to rely on non-diverse, safe 
modes so that the discriminator will not penalize it. 

Unlike GANs, diffusion models do not have a generator 
or discriminator. As a result, there are other 
mechanisms by which hallucinations arise. One source 
is the variation in the denoising process where the fake 
image is being generated. If errors start early during 
training, they will accumulate at every step of the long 

Probable Events Are Over-Estimated

Improbable Events Are Under-Estimated

Probable Events Poison Reality

Tails Shrink Over Time

Approximate FittingFinite Sampling

datan modeln

diffusion process. Evidence of hallucinated artifacts can 
be seen with low resolution, contrast, boundary artifact, 
and insufficient image reconstruction issues.63

MODEL COLLAPSE
Scraped data from the Internet has been the primary 
source of GenAI training data. It is likely that most 
original human-crafted content has already been 
exhausted in the training of existing LLMs. As a result, 
LLMs can suffer what is called “model collapse”64 where 
the LLM degrades and becomes useless (Figure 22). 
The result of retraining on generated, synthetic data will 
lead to outputs that are non-sensical and hallucinatory. 
This can occur in LLMs and diffusion models for 
imagery. Introduced in 2023 in “The Curse of Recursion” 
article, model collapse is defined as “a degenerative 
learning process where models start forgetting 
improbable events over time, as the model becomes 
poisoned with its own projection of reality.”

The challenge will be the scale needed to make a 
meaningful improvement to the LLM in curating human 
data. One opportunity is for users to apply AI in an 
augmenting way (i.e., users add their own tweaks, edits, 
and modifications to an AI’s output). This may help 
reduce the model collapse issue, but the evolution of 
how we share data and communicate is still to be 
determined in the wake of LLMs.

Methods for fixing hallucinations after the training is 
done are now being researched and are showing some 
initial promise. The most popular technique is to 
combine GenAI with a search engine and answer 
questions based on retrieved documents. If users 
include only the documents they know to be true, they 
will get more reliable answers. But integrating the 
concept of knowledge and truthfulness is still an open 
and challenging problem.

Figure 22: Model Collapse By Shumailov Et Al.65
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AI Vulnerability
As AI systems become progressively more central to 
defense, intelligence, civil, and commercial operations, 
the need to secure those systems also becomes 
increasingly important. Damaging attacks against AI 
systems—from manipulations of the physical world to 
fool self-driving cars to poisoned training data that 
compels LLMs to produce undesirable output—are 
being launched on commercial and government entities 
by adversaries. 

The AI security community has responded with a 
variety of resources aimed at defining a vocabulary for 
discussing AI vulnerabilities, understanding common 
adversarial techniques, and even prioritizing top AI 
security concerns. In broad terms, adversaries employ 
the following five types of attacks to debase, evade, and 
exfiltrate predictions and private information used in AI 
systems: 

•	 Poisoning: Adversaries pollute training data such 
that the model learns decision rules that further the 
attackers’ goals. This is possible by altering only a 
small fraction of the training data, and it represents a 
growing threat given the increased popularity of 
foundation models pre-trained on data scraped from 
the web.

•	 Malware: Adversaries package malware within 
models such that the malware is executed when the 
model is loaded or when a particular node in a neural 
network is activated. In addition, common ML 
libraries have been compromised with malicious 
dependencies.

•	 Evasion: Adversaries engineer inputs with 
manipulations that result in the model making 
misclassified and/or unintended predictions. If not 
caught, these errors can result in dangerous behavior 
of downstream systems. Adversaries can often make 
evasive maneuvers with little cost; for example, 
inexpensive adversarial stickers/patches can fool a 
state-of-the-art computer vision model and low- or 
no-cost prompt injections can force LLMs to 
relinquish their guardrails.

•	 Inversion: Adversaries exfiltrate private or revealing 
information concerning the AI model and its training 
data. This can be part of a reconnaissance effort for 
an adversary planning a future attack or a direct 
attempt to seize sensitive information.

•	 Model Theft: Adversaries steal intellectual property 
by exactly or approximately reproducing a model. 
Adversaries can identify additional vulnerabilities to 
exploit by examining the replicated model.

Enterprises can mitigate these risks by introducing 
safeguards, including adversarial training, model and 
dependency scanning, and evasion attack detection, 
throughout the AI operations lifecycle.
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A Look Ahead  
At Modern AI’s  
Potential Realized
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While GenAI’s technological capabilities have wowed 
global audiences, its enterprise impact has been more 
nuanced. In simplest terms, this technology has yet to 
consistently and independently perform complex  
operations with high confidence in many instances.

However, this will likely change over the next 18 to 36 
months as the underlying technology matures. Most 
significantly, we can expect continued improvements in 
contextual understanding, reasoning abilities, causal 
inference, knowledge retention, and abstraction. 
Furthermore, increased integration of stochastic and 
deterministic approaches—modern AI—will enable 
more well-rounded and balanced problem solving.

We should also expect continued advancements in 
computational hardware that balances speed, model 
size, and complexity as more use cases begin to rely on 
large GenAI algorithms. 

This progress will enable AI to tackle more complex 
problems, make nuanced judgments, and provide more 
reliable professional recommendations. As these 
capabilities mature, generative AI will move closer to 
emulating human-like cognitive processes, potentially 
leading to more autonomous decision making in certain 
domains where it has accumulated a wealth of 
knowledge and has been tuned accordingly. 

Furthermore, it is the combination of AI algorithms that 
will be powerful—not a single model alone. In the past 
several years we have seen progress in discrete, 
individual neural networks. In the future, AI tools such as 
an LLMs combined with RL algorithms, with a graph 

convolutional neural network will be combined to solve 
different tasks in concert. In this field, we already see 
research into breaking up complex systems using 
“estimators,” “evaluators,” and “critics” that solve 
problems collaboratively. 

Today’s GenAI can be primarily defined as a collection of 
tools that can summarize knowledge bases and 
generate probabilistic responses. However, we will soon 
see an increasing shift to autonomous agents that rely 
on reasoning to navigate and negotiate more complex 
operations independently.  

This evolution is set to challenge enterprises in two  
significant ways. First, they must make urgent 
investments in training programs to enhance 
employees’ AI literacy, prompt engineering skills, and 
AI-human collaboration techniques. While some roles 
may be automated—new positions focused on AI 
oversight, ethical considerations, and strategic 
application of AI technologies are likely to emerge. 
Simultaneously, they must also reaffirm their 
commitment to ethical, responsible AI, as these 
principles must be ingrained into these increasingly 
autonomous systems—providing guardrails to constrain 
GenAI within these agreed AI governance frameworks. 

Despite AI’s increasing potential, human judgment, 
creativity, and ethical considerations will remain 
indispensable in many organizational contexts. The 
most successful organizations will strike the right 
balance between AI automation and human expertise, 
leveraging the strengths of both to drive innovation and 
efficiency.
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The Path To Artificial General 
Intelligence (AGI)

Will AI become sentient? A theme of this primer has 
been that AI dramatically changed when OpenAI 
unveiled ChatGPT. Although earlier GPT versions 
existed, ChatGPT’s release in November 2022 brought 
the idea of AGI65 more broadly into public 
consciousness. 

The definitions of AGI often vary by source—for 
example, should it simply match or actually exceed 
conventional human intelligence? But a common focus 
is a high degree of cognitive thinking and reasoning that 
would enable open-ended problem solving and decision 
making. This is a fundamental question that we are all 
grappling with today.  

AGI and the related concept of “the singularity” were 
first popularized in 1983 by mathematician Vernor 
Vinge.66 Futurist Ray Kurzweil explored these concepts 
more deeply in his 2005 book, The Singularity Is Near.67 

Both researchers characterize the singularity as an 
ultra-advanced acceleration of technological progress 
(some attributable to AI) that catalyzes a greater-than-
human intelligence. Based on the success of human-
brain interfaces, Kurzweil predicts that, by the year 
2045, an AI-triggered transformation will forever alter 
the global economy and human civilization itself. In a 
follow-up published this year, The Singularity Is Nearer, 
Kurzweil reiterated this expectation as well as his belief 
that AI applications will realize human-level intelligence, 
which is the ability to perform on par with “the most 
skilled humans in a particular domain,” by 2029 in most 
respects.68

After taking a step back from the metaphysical, it is 
important to recognize that technological innovation is 
indeed accelerating, but that constraints remain. For 
example, today’s AI excels at tasks that require 
sophisticated pattern recognition operations. These 
systems are almost certain to continue to improve. 

However, our ability to develop AI systems that blend 
creativity, analysis, and judgment—such as systems 
with the ability to pair divergent and convergent 
thinking—is uncertain.

Given these realities, what will progress toward AGI 
realistically look like? Over the past decade, AI research 
has achieved breakthroughs largely by focusing on 
solving narrowly defined problems in areas such as 
object detection, video analysis, search and 
summarization, data mining, intelligent robotics, time 
series, and text mining. Future jumps in AI will continue 
through cumulative gains in solving other narrow 
problems.

These challenges could include causal or 
counterfactual reasoning (e.g., hypothesizing about the 
outcome to a possible event not yet executed); 
automation of work in a highly dynamic, multisensory 
environment; and scaling of AI hardware by separating 
storage and compute, akin to the use of a memristor in 
neuromorphic computing. 

Such breakthroughs—especially when joined with 
faster deployment, testing, and updating of AI 
algorithms due to improvements in hardware and 
access to truly voluminous data—will likely lead, one 
future day, to a technology that might achieve 
comparable human performance at certain tasks. At the 
same time, we cannot lose sight of the fact that AGI’s 
risks are real. They include almost certain workforce 
disruption, further threats to societal trust, and the 
potential to shift the balance of power dramatically and 
create technology that directly threatens humanity. 

As AI continues to evolve, it will be critical to remember 
that this technology was built by humans, and our 
insight powers it. Therefore, we must continue to expect 
and ensure transparency and accountability in its 
development and operations. At some point soon, we 
are even likely to demand a new Turing test for 
computers, which is their ability to describe, 
demonstrate, and defend their reasoning.   

“At some point, we really will have AGI. Maybe OpenAI 
will build it. Maybe some other company will build it.” 
Ilya Sutskever, Chief Scientist of OpenAI, 202369
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Convolutional Neural Network (CNN): A type of deep 
learning algorithm primarily used for processing and 
analyzing visual data, such as images and videos, by 
mimicking the way human visual processing works.

Diffusion Model: A generative model that simulates the 
diffusion process to transform random noise into 
structured data. It is often used for tasks like image 
generation.

Explainable AI: An area of AI research focused on 
making machine learning models more interpretable 
and understandable. The goal is to provide transparency 
on how decisions are made.

Acknowledgments

Glossary of Terms
(Developed by ChatGPT)

Agent: An autonomous software entity designed to 
perform tasks or make decisions based on input, often 
using advanced algorithms like natural language 
processing and deep learning to interact with users and 
generate content.

Alignment: Ensuring that an AI system’s goals, 
behaviors, and values are consistent with human values 
and intended outcomes, preventing it from acting in 
ways that are harmful or unintended.

Backpropagation: A training algorithm for neural 
networks that involves adjusting the weights of the 
connections based on the error rate of the output, 
allowing the network to learn by minimizing the 
difference between predicted and actual results.
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Few-Shot Learning in LLM: Using an LLM to perform a 
task by providing it with a very small number of 
examples. It bridges the gap between zero-shot and 
extensive training.

Fine-Tuning: Adjusting the parameters of a pre-trained 
model on a smaller, task-specific dataset. This helps 
adapt the model to specific applications.

Foundational Model: A large, general-purpose 
pre-trained model that can be fine-tuned for specific 
tasks. It serves as a starting point for many AI 
applications.

Generalizability: The ability of a model to perform well 
on unseen data. It indicates how well a model can adapt 
to new situations.

Generative Adversarial Network (GAN): A type of 
neural network model comprising two networks 
(generator and discriminator) competing against each 
other. The generator creates data while the discriminator 
evaluates its authenticity.

Generative Pre-Trained Transformer (GPT) Model: A 
type of LLM developed by OpenAI. It is designed to 
generate human-like text based on given prompts.

Large Language Model (LLM): A type of neural 
network trained on vast amounts of text data. Examples 
include GPT models.

Loss (Cost) Function: A mathematical formula that 
measures the difference between the predicted output 
and actual data. It is used during training to adjust a 
model’s weights.

LLM “Chaining”: Linking multiple prompts and 
responses together in a sequence to guide an LLM 
through more complex tasks or reasoning.

Model Capacity: Refers to the amount of information or 
complexity a model can capture. Higher capacity can 
mean better fit to data but also potential overfitting.

Multimodality: The ability of a model to process and 
integrate information from multiple types of data, such 
as text, images, audio, and video, to enhance 
understanding and performance across different tasks.

Neural Network: A computational model inspired by 
biological neurons used for tasks like classification, 
regression, and generation.

Noise: Random or unwanted fluctuations in data. In 
generative models, noise can serve as a starting point 
for generating data.

Orchestration: The coordinated management and 
automation of multiple AI models, processes, and 
workflows to achieve a seamless and efficient overall 
operation.

Parameters or Weights: Values in a neural network that 
are adjusted during training. They determine how input 
data is transformed into outputs.

Probability Distribution: A mathematical function that 
describes the likelihood of different outcomes. In AI, it is 
often used to model uncertainties.

Prompt: A question or statement given to an AI model 
to generate a response. It acts as the initial input to 
guide the model’s output.

Prompt Engineering: The practice of crafting and 
refining prompts to optimize an AI model’s response. 
This can help improve the quality or specificity of model 
outputs.

Recurrent Neural Network (RNN): A type of neural 
network designed for processing sequential data by 
maintaining a “memory” of previous inputs, making it 
suitable for tasks like language modeling and time series 
analysis.

Reinforcement Learning from Human Feedback 
(RLHF): A method where an AI system is trained to 
make decisions using feedback from human evaluators, 
enhancing its ability to align with human values and 
preferences.

Reproducibility: The ability to consistently reproduce 
the same results using the same data and methods. It 
ensures the reliability of experiments and studies.

Self-Attention: A mechanism in neural networks that 
weighs input data differently, enabling the model to 
focus on more relevant parts. It’s a key component of 
Transformer architectures.

Supervised Machine Learning: A learning approach 
where a model is trained on labeled data, meaning each 
example in the training dataset is paired with the correct 
output.

Token: A unit of text resulting from tokenization. It can 
represent a word, a part of a word, or even a character.

Tokenization: The process of converting a sequence of 
text into smaller units (tokens) for easier processing. 
Common tokens include words or sub-words.

Transfer Learning: Using a model trained on one task 
as the foundation for training on a different, but related, 
task. This approach leverages previously learned 
knowledge.

Transformer Model: A type of neural network 
architecture known for self-attention mechanisms. 
Widely used in tasks like machine translation and NLP.

Unsupervised Machine Learning: A learning approach 
where a model is trained without labeled data. The goal 
is often to discover patterns or structures within the 
data.

Zero-Shot Learning in LLM: Using an LLM to perform a 
task without any specific examples or training on that 
task. The model leverages general knowledge.
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