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Overview

Computer vision is easy to take for granted, given 
how reliable and adaptive it has become. Travel 
down the highway, and your toll payment account is 
correctly debited thanks to a computer vision tool that 
classifies vehicles by size and type. But this day-to-
day ubiquity can make it more difficult to recognize 
the transformative power of this type of artificial 
intelligence (AI). Computer vision is unique and 
valuable largely because it enables computers to see 
and experience the world in much the way humans 
do. As we will explore in this report, recent technology 
advances are ushering in an era of enhanced 
performance and insight—a potential golden age for 
computer vision—for enterprises prepared to seize 
the moment.  

Computer vision leverages machines to find, decipher, 
and extract meaning from representations of the 
rich visual and other electromagnetic information 
present in the world around us. It is an area of AI that 
has already demonstrated significant impact while 
holding potential for new innovations. The “advanced 
seeing” embodied through computer vision uses 
machine learning (ML) algorithms and neural 
networks to recognize and process data rapidly 
and in large volumes, enabling human operators to 
focus on high-value tasks. The increasing accuracy, 

robustness, and diversity of today’s computer vision 
systems are pushing them to the forefront of many 
mission applications.  

Increasingly, computer vision is moving beyond its 
traditional focus on identification and classification 
to encompass more complex assessment and 
analysis tasks. For example, traditional computer 
vision typically identifies objects within images and 
puts them into categories, such as distinguishing 
between dogs and cats in photographs. By contrast, 
new applications can assess a scene’s context, detect 
subtle anomalies, and even predict future events 
based on visual data. 

As a result, while a traditional application that focused 
on infrastructure resilience might have helped locate 
bridges, roads, and buildings in satellite imagery, a 
new application might detect wear and tear in a bridge 
span and provide rich data insights that decision 
makers can use to plan maintenance. The shift to 
more robust functionality is being driven by many 
technological changes that are accelerating alongside 
the rest of the AI universe, meaning that computer 
vision’s importance and ubiquity are poised to grow 
even further.
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Computer Vision: State of Play

Like human eyes perceiving light, computer vision 
systems interpret image pixels for further processing 
and analysis, bolstered by powerful computers 
and algorithms. But they also supercharge human 
capabilities by finding and processing visual 
and other stimuli beyond what human beings 
can otherwise detect. Incorporating established 
knowledge about people, environments, and objects 
as well as the laws of physics, these modern systems 
are highly accurate, saving time, effort, and focus 
for human operators by efficiently performing tasks 
like image recognition, semantic segmentation, and 
object detection.

Computer vision applications support real-time 
processing for enhanced situational awareness in 
the digital battlespace, where low latency and high 
precision are critical, and for facial recognition tools, 
which require robust algorithms that enable feature 
extraction and matching. Applications extend to 
healthcare diagnostics through close analysis of 
medical images, precision agriculture with crop 
monitoring and disease detection, and smart 
checkout systems for the retail enterprise, among 
countless other use cases across the public and 
private sectors.

With ongoing advances in supercomputing, 
Internet of Things (IoT) systems and edge devices, 
AI integration, and fast 5G networks, computer 
vision continues to evolve from automation and 
identification toward far deeper insight and analysis. 
This evolution is like moving from a single camera 
that captures images to a sophisticated, multilayered 
optical system—one that reads and gains insight from 
the context of those images much as the human brain 
understands visual stimuli. As a result, computer 
vision can now deliver tangible impact whenever 
organizations need to obtain and use visible and 
unseen data as quickly as possible.

Influencing this progress is a shift from static 
ontologies to more dynamic AI systems. Static 
ontologies are predefined structures that cement 
relationships between concepts and objects. Often 
created manually, they lack flexibility when engineers 
are using novel datasets. By contrast, the latest 
systems leverage advances in the field of language 
understanding to become agile and adapt over time, 
with ML algorithms enabling consistent performance 

improvements and the delivery of unique outputs that 
are not tied to predetermined sets of classes. 

For example, modern pretrained multimodal models 
combine language understanding with the ability to 
capture key optical concepts. They enable capabilities 
like zero-shot classification, which refers to a system 
that can recognize and categorize things it has never 
seen before without explicit training. In other words, 
these models can apply learned insights to categorize 
new, unseen classes, as opposed to operators 
manually constructing this “knowledge.” While 
large language models (LLMs) have demonstrated 
the ability to learn concepts by ingesting and 
contextualizing massive amounts of text, visual and 
multimodal foundation models can similarly interpret 
and draw relationships between visual data, grounded 
in linguistic concepts.

No longer a siloed or one-dimensional application, 
computer vision has matured to become multimodal, 
multitemporal, and hyperspectral:

• �Multimodal computer vision, which includes visual 
foundation models, processes and interprets 
diverse forms of information, such as text, 
photographs, video, and audio, providing a deeper 
understanding of context by integrating sensory 
data in imitation of human perception, from object 
and pattern recognition to depth perception and 
motion tracking.

• �Multitemporal computer vision tracks changes 
over time, allowing for a better understanding of 
dynamic processes and events and improving the 
prediction of future states and behaviors. 

• �Hyperspectral computer vision captures and 
analyzes data across the electromagnetic 
spectrum, providing detailed understanding of 
informational units the human eye cannot see.

Together, these dynamics underscore the growing 
power of computer vision to solve real-world 
challenges in all industries by augmenting the 
sensing, processing, and interpretation of optical 
data to generate enterprise insight.
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Computer vision emerged in the 1960s, with early 
systems distinguishing shapes like circles, squares, 
and triangles and identifying simple patterns. 
However, overall performance was limited by a 
lack of computing power, minimal access to large 
datasets, and inflexible learning algorithms. Recently, 
innovations in data, software, and hardware have 
revolutionized the capacity of these systems, 
enhancing their accuracy, efficiency, and usefulness 
across a wide range of applications.

Data Is Now Richer and More 
Ubiquitous 
In the realm of computer vision, data is the 
essential fuel that powers the creation, training, and 
operation of models. Recent advancements in data 
management have made the right data more readily 
available, which has significantly enhanced the 
performance and utility of computer vision systems. 
The emergence of data standards and common 
storage paradigms has paved the way for the 
computer vision community to innovate faster.

Development of Prelabeled Datasets
The wider availability of prelabeled datasets has 
streamlined the training of computer vision models. 
Labeled datasets provide a vast amount of annotated 
data that engineers can use to train models more 
efficiently. These datasets are often curated by 
experts and contain a wide variety of labeled images, 
which help in improving the accuracy and robustness 

Data, Software, and Hardware 
Convergence Drive Breakthrough 
Performance

of vision models. For instance, datasets like ImageNet 
and MS-COCO have become benchmarks in the field, 
enabling model training on diverse and extensive 
collections of images. The use of these datasets and 
of more recent examples, such as LAION-400M, 
Ego4D, Objects365, and ImageBind, reduces the time 
and effort required for manual labeling, allowing for 
quicker deployment of applications.

Integration of Synthetic Data
Synthetic data is artificially generated data used to 
train ML models. It is particularly useful when real-
world data is insufficient, expensive, or difficult to 
obtain. Synthetic data allows organizations to address 
new scenarios and unseen worlds or objects with 
computer vision, reducing the cost of developing 
new models. In defense and intelligence spaces, for 
example, this capability enables engineers to more 
accurately predict how current models will respond 
to new or hypothetical threats through simulating 
rare events and complex scenarios on the virtual 
battlefield. 

Techniques such as 3D modeling and simulation and 
generative adversarial networks (GANs) are used to 
create realistic or stylized images. These methods 
enable the generation of diverse datasets, simulating 
edge cases that are difficult to capture with real-
world data. Synthetic data also ensures privacy and 
compliance by avoiding the use of real-world data, 
which is crucial in sensitive fields like healthcare.

Automation of Data Pipelines and Labeling
Increasingly, the workflow spanning data ingestion, 
preprocessing, transformation, and model training 
is being automated using specialized tools. These 
integrated data pipelines ensure that data moves 
efficiently through each stage of a computer vision 
system, minimizing manual intervention and repetitive 
tasks and leading to increased efficiency, scalability, 
and consistency in data processing. 

As a key part of the data pipeline, data labeling 
focuses specifically on annotating images or videos 
with relevant information that identifies the objects, 
faces, or actions they show. While commercial, 
open-source, and academic labeled datasets remain 
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important, they don’t always meet the needs of 
specialized use cases with the requirement to train or 
tune models using tailored data inputs.

The labeling process is extremely time-consuming 
and expensive if done manually, especially for large 
datasets. As a result, organizations are approaching 
the point where it is no longer feasible to have 
hundreds of human workers label data. Automated 
data labeling uses techniques like pre-trained models, 
which leverage existing models to predict labels on 
new, unlabeled data; active learning, where a machine 
learning model asks for human input only for data 
points that are uncertain, reducing the number of 
labels needed; and semi-supervised learning, which 
combines a small amount of labeled data with a large 
amount of unlabeled data, allowing the system to 
automatically generate labels for the latter.

Through these techniques, automated data labeling 
significantly reduces the time, cost, and scalability 
challenges of manually labeling large datasets, 
with the result that small workforces can enrich 
their own datasets. It enables rapid annotation 
using pre-trained models, algorithms, or synthetic 
data generation. This automation cuts labor costs 
and scales efficiently, processing vast amounts of 
data without manual constraints. It also improves 
consistency and accuracy by reducing human error, 
ensuring uniform datasets for performant models.

Software Gets More Intelligent
Computer vision applications combine integrated 
tools for managing and processing data with 
specialized algorithms for analyzing various media 
types. Given the diversity of media types and 
business applications, numerous combinations are 
often used to best address specific requirements. 

Algorithmic Improvements
The invention of convolutional neural networks 
(CNNs), together with implementation on graphics 
processing unit (GPU) hardware, represented a 
breakthrough in learning-based computer vision. 
CNNs provide a mathematical formalism for flexibly 
encoding spatially distributed information into 
the learned parameters of a model. Moreover, 
the fundamental operation of CNNs—that is, 
convolution—is shift-invariant, which allows the 
network to detect the same feature regardless of the 
location in the input. This property is crucial for tasks 
like object recognition, localization, and tracking, 
where it is important to classify patterns consistently 
regardless of their position in an image.

With the emergence of CNNs—such as widely used, 
highly performant models like You Only Look Once 
(YOLO)—formerly intractable computer vision 

problems like real-time and highly accurate image 
recognition and classification became manageable. 
Furthermore, these model architectures are well-
suited for portable devices due to their lower 
resource requirements and are still advancing today. 
Nevertheless, CNNs have strict limitations. Without 
resizing or pooling, they require a fixed input image 
size. In addition, they have a relatively small receptive 
field, which is the specific area of an image that the 
vision application focuses on as it assesses what it is 
seeing.

In today’s most advanced computer vision research, 
however, vision transformers (ViTs) have largely 
taken center stage, overshadowing CNNs in many 
leading-edge discussions—even though CNNs 
like YOLO remain widely used and highly effective. 
Fundamentally different than CNNs, ViTs divide 
the image into patches and convert them to feature 
representations called “tokens.” Each feature is then 
combined with every other feature using a self-
attention mechanism and passed to a feedforward 
network. Because the entire image is ingested by the 
model, ViTs do not suffer from a limited receptive 
field. As a result, they are extraordinary context 
learners, meaning that they excel at interpreting and 
using all of the information an image contains.

As an added benefit, the self-attention mechanism 
in ViTs is nearly identical to those in LLMs used 
for natural language processing, a realization that 
has paved the way for a surge in multimodal AI 
development. With ViT architectures, engineers can 
supplement training with context provided by user 
descriptions or ingest multiple wavebands like visible, 
infrared, and radar in a unified way of “seeing” that is 
far more than CNNs can accomplish on their own. A 
downside is that ViTs require tremendous amounts of 
data to train, even by CNN standards.

Self-supervised learning has also emerged as a 
powerful innovation. Traditionally, deep learning 
models required large, labeled datasets for training. 
Self-supervised learning allows models to learn 
representations of images without extensive manual 
labeling by leveraging unlabeled data. This has led 
to breakthroughs in image classification, enabling 
models to generalize better across different datasets. 

Vision Foundation Models
Vision foundation models (VFMs) are further 
revolutionizing the accessibility and adaptability of 
computer vision. Often using the ViT architecture, 
these large, pre-trained models are engineered to 
tackle a broad spectrum of visual tasks, including 
image classification, object detection, segmentation, 
and even the generation of descriptive captions for 
images. VFMs allow enterprises to readily adapt the 
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most powerful computer vision models to their unique 
requirements, often as easily as tapping into a cloud-
based application programming interface.

Like LLMs, VFMs are trained on datasets comprising 
vast amounts of image data, enabling them to harness 
rich, nuanced representations of visual content. 
VFMs can interpret images and describe what is 
happening within them, moving toward reasoning 
capabilities and the handling of more complex cases 
like identifying suspicious behavior or understanding 
interactions in a scene. The generalization capabilities 
of VFMs extend beyond their initial training tasks to 
excel in various other visual applications. For example, 
these models have demonstrated strong zero-shot 
capabilities in segmentation, indicating their ability to 
adapt to new tasks.

A specific subset of VFMs, vision language models 
(VLMs) are transforming multimodal learning by 
integrating visual and text-based data to execute 
complex tasks. VLMs typically include an image 
encoder, a text encoder, and a fusion mechanism 
that combines these modalities to generate coherent 
outputs. 

Combining deep learning models for both images 
and text has led to multimodal architectures like 
Contrastive Language-Image Pretraining (CLIP), 
which significantly improves zero-shot learning. This 
capability allows models to efficiently understand 
and relate images and text simultaneously, opening 
new possibilities in image generation. CLIP-enabled 
applications can create outputs based on concepts 
they haven’t been explicitly trained on, offering 
versatility to support missions that require precise 
decision making in unpredictable, rapidly shifting 
operational environments. 

Models like CLIP use large datasets to learn 
relationships between images and text, enabling 
image captioning, visual question-answering, and 
text-guided image generation. By blending visual and 
linguistic data, VLMs provide a basis for more intuitive 
AI systems that can seamlessly generate multimodal 
content. 

In the area of optical character recognition (OCR), 
for example, VLMs simplify processes by leveraging 

zero-shot learning capabilities. Unlike traditional OCR 
systems that require extensive training on diverse 
datasets, VLMs generalize well to new, unseen data 
scenarios without exhaustive retraining. This agility 
supports applications such as automated document 
processing and enhanced accessibility features for 
digital platforms.

Faster, More Efficient Hardware
The continued development of GPUs and tensor 
processing units (TPUs) has also democratized 
computer vision by making it possible to run 
deep learning models faster and more efficiently. 
These specialized processors allow for the parallel 
computation needed to handle many operations 
simultaneously, streamlining the process of training 
models on massive datasets. TPUs optimize the 
tensor operations that underlie neural network 
computations specifically. GPUs and TPUs are 
readily available as cloud-based resources, making 
it easier for organizations to get started using 
advanced hardware without a significant investment 
for on-premises/physical infrastructure. Advances 
in memory and storage technologies, such as high-
bandwidth memory and non-volatile memory express 
storage, have further accelerated data access speeds 
and computational throughput.

Catalyzed by hardware and algorithmic 
breakthroughs alike, lightning-fast inference allows 
vision systems to process images and video streams 
in real time. This capability is critical for certain 
healthcare applications, such as when instant image 
analysis can inform surgical procedures as doctors 
perform them. Such improvements make computer 
vision systems more reliable and versatile in high-
stakes environments including security and defense. 
However, despite the advancements in hardware, 
more powerful models like VLMs require massive 
amounts of compute and memory to train and for 
inference. Ultimately, the expansion of a wide range 
of capabilities—from data, software, and hardware to 
processing capacity, storage, and more—will continue 
to be essential to drive future progress in computer 
vision.

GENERATING … Scene Description: People attend a busy market on a tree-lined street
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Looking at the Future

The Edge Paradigm
Computer vision is increasingly moving to the edge, 
where sensors operate and data is processed locally 
on devices like smartphones and IoT devices. At the 
same time, a larger range of sensor hardware types—
encompassing tools for gathering and processing 
LiDAR, radio frequency signals, synthetic aperture 
radar, and infrared data—is expanding the information 
streams available to deliver computer vision models. 
Overall, the edge paradigm offers significant benefits, 
such as reduced latency and enhanced privacy. 
However, it also presents several challenges, such as 
the need to address size, weight, and power (SWaP) 
and connectivity constraints. These challenges 
are significant for the warfighter in an increasingly 
digital battlespace, when the need to carry power-

Computer vision has undergone a remarkable transformation in recent years, propelling the 
technology beyond mere classification and identification and enabling more sophisticated 
analysis and prediction capabilities. However, capitalizing on this potential requires 
imagination and the ability to assess the status quo with fresh eyes. Here we explore the 
implications of these trends for four key scenarios—edge computing, multimodal AI, 
generative AI, and virtual reality (VR) or augmented reality (AR)—focusing on their potential 
impact on federal government operations and mission performance.

hungry equipment hinders mobility and when failsafe 
connectivity is needed for instantaneous decision 
making in denied, degraded, intermittent, and limited-
bandwidth environments.

Hardware advances, model optimization, and more 
efficient software solutions are helping organizations 
overcome these challenges. For example, 
dedicated edge AI chips—such as the Google 
Edge TPU coprocessor, NVIDIA JetsonTM modules, 
the Apple Neural Engine chip, and Qualcomm’s 
Snapdragon systems on chips—run deep learning 
models efficiently on edge devices with low power 
consumption, enabling real-time image processing 
on resource-limited devices. Intel is adding neural 
processing units to new central processing unit 
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designs to accelerate AI tasks. Field-programmable 
gate array and application-specific integrated circuit 
technologies, although not general-purpose, provide 
custom, energy-efficient computing solutions 
optimized for specific vision tasks.

Quantization reduces the precision of model weights 
as a means to reduce GPU memory demands 
while minimally affecting model accuracy. Other 
model compression techniques, such as pruning, 
which removes unnecessary parameters, and 
knowledge distillation, which is a way to train 
smaller models using larger ones, similarly reduce 
the computational and energy demands of vision 
models without compromising performance. Memory 
and storage can be optimized using pared-down 
CNN architectures and other techniques to reduce 
model size. Specifically, models like MobileNet and 
EfficientNet effectively balance accuracy and size in 
edge environments. Even architectures as large and 
computationally expensive as ViTs are making their 
way to edge devices. These find their way into edge-
specific frameworks like TensorFlow Lite and PyTorch 
Mobile and allow developers to deploy lighter versions 
of deep learning models tailored for devices with 
limited memory. 

Additional enhancements for edge 
applications include:

SECURITY CONSIDERATIONS
Assuming edge devices may end up in the wrong 
hands warrants the need for model encryption, 
watermarking, and safeguards against reverse 
engineering techniques. On-device processing 
strengthens security and data privacy by reducing the 
need to send sensitive data to the cloud, minimizing 
breach risks. Encrypted communication and secure 
hardware, like trusted execution environments or 
hardware security modules, further protect data and 
models at the edge. 

CONNECTIVITY
To address connectivity limitations, edge devices use 
edge-native architectures for real-time processing to 
reduce or avoid the need for cloud connectivity. Edge-
cloud hybrid models handle critical tasks locally and 
less time-sensitive tasks in the cloud.

DEPLOYMENT AND MAINTENANCE
Platforms like Amazon Web Services IoT Greengrass 
and Google Cloud IoT Edge simplify edge deployment 
and maintenance by coordinating remote updates 
across intermittently connected devices, while 
containerization tools like Docker and Kubernetes 
enable consistent software-defined deployments 
across diverse edge devices.

Multimodal AI Grows AI Adoption
Recent advancements in computer vision 
technology—particularly with ViTs—have paved the 
way for enhanced use of multimodal data. Multimodal 
AI combines diverse text, imagery, audio, and video 
data sources for better decision making. The model 
can integrate these multiple data types to generate 
descriptive outputs and can infer missing modalities 
from available data when necessary. The fusion of 
data types also facilitates a more natural human-
model interaction and offers a transparent means of 
interpreting the model’s decision-making process.

For example, one of the key benefits of recent 
computer vision advancements is the ability to 
recognize and describe actions in videos. By 
combining language, vision, and video data, 
multimodal AI can convert visual information into 
searchable text. This capability makes it easier to 
find specific visual information based on text-based 
queries, significantly enhancing the usability of video 
data. In surveillance operations, this technology can 
automatically identify and tag actions, making it 
simpler to locate and analyze critical events.

In addition, integrating LLMs with vision models 
has led to more natural and intuitive interactions 
with AI systems. This integration allows robots and 
AI systems to understand and respond to verbal 
instructions in real time. Advances in grounded 
language learning enable robots to comprehend 
visual scenes using language, allowing them to 
perform tasks based on verbal commands, such as 
moving objects to specific locations. This capability 
is particularly valuable in logistics and supply chain 
management within federal operations.

Multimodal AI systems that combine data from 
various sources provide a more comprehensive 
understanding of complex scenarios. The ability to 
integrate visual data with other operational inputs, 
such as real-time communication or environmental 
data, enhances situational awareness. In crisis 
management, multimodal AI can analyze visual, 
textual, and sensor data to provide real-time 
recommendations during national emergencies. 
This capability enables government officials to make 
informed decisions quickly, improving response times 
and overall effectiveness.  

Generative AI Takes Shape
Generative AI broadly refers to models and 
techniques that can create new content—such as 
images, text, audio, or video—by learning natural 
distributions from a given dataset. It encompasses 
several models and algorithms, such as GANs, 

Copyright © 2025 Booz Allen Hamilton Inc. 8



diffusion models, and variational autoencoders, which 
can generate realistic content based on user prompts 
and patterns learned from training data. 

Generative AI can enhance computer vision 
performance in several ways. For example, in image 
synthesis, generative AI is often used to create 
synthetic images for tasks such as augmenting data 
or producing synthetic datasets to train computer 
vision models. GANs, for example, can generate 
realistic images that may be visually indistinguishable 
from real ones.

Some data augmentation techniques use generative 
AI to convert one type of image into another. 
Techniques such as CycleGAN can transform 
sketches into realistic photos or day images into 
night images to provide additional training data that 
simulates different real-world conditions. Engineers 
also use generative AI for super-resolution and image 
enhancement to improve the quality of images, 
such as converting low-resolution satellite imagery 
into high-resolution versions in order to enhance 
surveillance capabilities, pinpoint disaster response, 
or improve the accuracy of environmental analysis.

The difference between computer vision’s ability to 
identify objects in images and generative AI’s ability 
to create images lies in the tasks each approach is 
designed to perform, the underlying processes, and 
the type of output generated. In computer vision, 
the primary goal of object identification is to detect 
and recognize specific objects within an image by 
analyzing visual features such as shape, color, texture, 
and patterns. The output is typically structured data, 
such as bounding boxes around detected objects, 
labels categorizing each object, and confidence 
scores indicating the model’s certainty. For example, 
the output from a computer vision model could be 
{“object”: “car”, “position”: [x1, y1, x2, y2], “confidence”: 
0.95}. 

In contrast, one goal of generative AI is to generate 
textual descriptions of an entire image, capturing the 
context, describing relationships between objects, 
and providing a narrative summary. This goes beyond 
just identifying objects, aiming to produce a natural 
language description of what is happening in the 
image. For instance, the output from a generative AI 
model might be “A red car is parked at the curb, and 
a man is walking his dog nearby.” Alternatively, the 
model could process this output as a new text prompt 
and generate the corresponding image. 

Generative AI models also have a deeper contextual 
understanding of images compared to traditional 
computer vision systems. Instead of merely 
recognizing objects in isolation, generative AI can 
interpret the relationships between objects and their 

context within the scene, allowing for more accurate 
and detailed search results, particularly for complex 
queries where understanding the entire image is 
necessary.

Traditional computer vision search typically relies 
on matching image features like color, texture, or 
shape to find similar images. However, the underlying 
representations employed in generative AI enable 
semantic search, meaning engineers can use the 
meaning behind an image or query and retrieve 
images based on concepts rather than just visual 
features.

Generative AI can not only search for existing 
images but also generate new ones on the fly based 
on a query or prompt. Aiding image search, this 
capability allows users to create images that may 
not exist in the dataset but can be synthesized to fit 
the search criteria. This capability gives generative 
AI a significant advantage over traditional computer 
vision search, which is limited to retrieving images 
or grouping similar images already present in the 
database.

Bringing Virtual Reality to Life
Advances in computer vision and generative AI are 
playing a critical role in making the metaverse and 
other VR, AR, or mixed-reality (MR) applications more 
realistic, immersive, and useful. Enhanced realism 
and immersive environments are achieved through 
object and scene reconstruction, where computer 
vision enables highly detailed 3D reconstructions. 
Techniques like photogrammetry and 3D scanning 
capture and import real-world objects and spaces 
into virtual environments with extreme accuracy, 
allowing users to explore lifelike digital spaces in 
VR/AR applications. Additionally, computer vision 
helps simulate light and shadow by analyzing real-
world lighting conditions, ensuring that objects cast 
shadows and reflect light realistically, thus enhancing 
the overall realism of virtual spaces.

Computer vision is critical for hand tracking and full-
body motion capture, enabling natural interactions 
within the metaverse or VR/AR applications. Users 
can manipulate objects, move through environments, 
and interact with virtual characters using gestures 
and body movements. Advances in pose estimation 
and motion tracking facilitate these interactions 
without the need for additional hardware like 
controllers, making the experience more intuitive. 
Facial expression recognition allows avatars in the 
metaverse to reflect users’ real-time emotions, 
making virtual interactions feel more personal and 
engaging, which is especially important in social 
applications.

Copyright © 2025 Booz Allen Hamilton Inc. 9



Computer vision enhances real-time object 
recognition and interaction, which allows for 
the recognition of real-world objects and their 
interaction with virtual elements in MR applications. 
AR applications can overlay digital information or 
tools onto physical objects, enabling seamless 
interaction between real and virtual worlds. 
Semantic understanding is another key aspect, as 
computer vision can analyze the context of real-
world scenes and objects to provide relevant and 
actionable virtual overlays.

Precise spatial mapping of physical environments 
allows VR/AR devices to understand the layout 
of the real world. This is particularly important for 
creating MR applications where virtual elements 

must be integrated into real-world spaces without 
disrupting the physical environment, allowing users 
to navigate seamlessly between physical and virtual 
spaces. 

For AR applications, organizations can also use 
computer vision for indoor navigation, where GPS 
signals are weak, by building accurate maps of 
indoor spaces and guiding users through virtual 
overlays in settings like malls, airports, or hospitals. 
Finally, computer vision allows virtual environments 
in the metaverse to simulate real-world physics, 
making interactions with objects more believable. 
Whether it is objects falling, bouncing, or reacting 
to user input, physics-based simulations add an 
important layer of realism.

Copyright © 2025 Booz Allen Hamilton Inc. 10



A key focus of this paper is documenting computer 
vision’s march forward in terms of its capabilities, 
utility, and value. And, as previously discussed, 
ensuring that enterprises can stay at the forefront 
of these innovations requires building the right 
competencies and processes. It also requires the 
right infrastructure and architecture.

A dedicated computer vision technology platform can 
help organizations build upon these competencies 
to deploy optimized solutions that address unique 
requirements at mission speed. Relying on an open, 
extensible, adaptive architecture also streamlines the 
integration of these future innovations. 

Additional advantages of an integrated, logically 
structured platform include the following:

• �Allows for the automation of processes such as data 
collection, labeling, and model training, improving 
overall productivity. 

• �Eases the deployment of models to the cloud 
or edge, enabling scalability across multiple 
applications and environments.

• �Enables management of everything from data 
ingestion to inference and monitoring in a single 
workflow, reducing friction between different stages 
and allowing for faster model iteration cycles. 

• �Reduces the need for extensive manual labor and 
infrastructure investments via automated data 
pipelines and transfer learning models, leading to 
more cost-efficient development.

• �Supports the addition of new computer vision 
methods in a modular way, from object detection to 
segmentation or image classification, and enables 
deployment in diverse environments (e.g., edge, 
cloud), improving flexibility.

Building a Computer Vision 
Technology Platform

• �Incorporates tools for monitoring, retraining, 
and improving models over time, ensuring that 
performance remains optimal as data evolves and 
new challenges arise.

Platform Components
Key components of a computer vision technology 
platform include data collection, preprocessing, 
model training, inference, and deployment tools. 

DATA COLLECTION AND INGESTION 
This component involves gathering images or 
videos from cameras, sensors, drones, or other 
devices, or generating synthetic data, and storing 
the data in cloud storage systems (e.g., AWS S3, 
Google Cloud Storage) or on-premises solutions. An 
extract, transform, load, or ETL, process can improve 
computer vision performance by standardizing and 
organizing file structure. Data labeling tools like 
Labelbox, Supervisely, or Computer Vision Annotation 
Tool assist in tagging objects for supervised learning 
models. 

DATA PREPROCESSING AND AUGMENTATION 
Resizing, normalization, color correction, and noise 
reduction help ensure data consistency and readiness 
for model training. Preprocessing frameworks 
include OpenCV and Python Imaging Library. Data 
augmentation techniques, such as flipping, rotating, 
cropping, or adding noise, artificially increase dataset 
size and diversity, making models more robust to real-
world variations. Libraries like Albumentations and 
Keras Preprocessing are commonly used for this step.
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MODEL DEVELOPMENT AND TRAINING 
Model development and training are supported by 
deep learning frameworks like TensorFlow, PyTorch, 
and Keras, which provide the necessary tools to 
create architectures such as CNNs, ViTs, and GANs. 
Pre-trained models like ResNet, Inception, or YOLO 
can be fine-tuned for specific tasks, reducing the 
need for large amounts of labeled data and training 
time. 

SOFTWARE MODULARITY 
Integrating modular, best-of-breed software 
components and AI technologies allows engineers to 
efficiently build, deploy, and operate computer vision 
models across various environments, such as the 
cloud and edge. Modular components simplify the 
process of adapting to new requirements, scaling to 
handle complex use cases, and integrating with other 
systems, reducing risk.

HARDWARE 
High-performance hardware, such as NVIDIA 
GPUs and Google TPUs, is essential for training 
deep learning models efficiently, especially when 
dealing with large datasets or real-time processing 
requirements. These hardware accelerators are 
optimized for parallel processing, which is critical for 
image data.

MODEL INFERENCE AND DEPLOYMENT 
After training, models are deployed to perform 
inference on new data. Edge devices (e.g., mobile 
phones, IoT devices, drones) can use optimized 
models for real-time processing, while cloud solutions 
are typically used for more complex, resource-
intensive tasks. Open neural network exchange 
models allow models to be portable across different 
platforms and devices. Tools like TensorFlow Serving, 
TorchServe, KServe, or AWS SageMaker are used to 
deploy models into production, supporting scaling to 
handle real-time requests and often integrating into 
larger systems through application programming 
interfaces.

MONITORING AND FEEDBACK
After deployment, it’s critical to monitor model 
performance in real-world scenarios. Tools like 
Prometheus and Grafana monitor metrics such as 
latency, accuracy, and performance drift. Continuous 
feedback loops allow for retraining models with new 
data to maintain accuracy over time. 

DATA MANAGEMENT AND GOVERNANCE 
Just like code, datasets and models need to be 
versioned to track changes over time. Tools like data 
version control and Git are essential for establishing a 
logical governance flow that tracks changes in datasets 
and models over time. For privacy-sensitive data, tools 
ensure compliance with regulations like the General 
Data Protection Regulation and Health Insurance 
Portability and Accountability Act, protecting data 
during training and deployment. In addition, static 
code analysis tools such as SonarQube and container 
scanning tools such as Twistlock ensure that secure 
apps and containers are delivered in accordance with 
government and Department of Defense policies.

With a comprehensive computer vision technology 
platform, organizations can harness integrated 
software services to build, deploy, and operate 
advanced models in the cloud, secure environments, 
and the disconnected edge. Leveraging best-of-breed 
components for data ingestion, labeling, training, and 
optimization is the key to deploying faster at lower 
cost and risk while maintaining long-term extensibility. 
As organizations tap into these capabilities, they 
will strongly position themselves to capitalize on 
the shift from traditional computer vision to more 
sophisticated, context-aware, and interpretable models 
for increasingly complex missions.
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